metacyclic, supersoluble, monomial, 2-hyperelementary
Aliases: C4.Dic3, C12.1C4, C4.15D6, C3⋊2M4(2), C22.Dic3, C12.15C22, C3⋊C8⋊5C2, (C2×C6).3C4, (C2×C4).2S3, C6.6(C2×C4), (C2×C12).4C2, C2.3(C2×Dic3), SmallGroup(48,10)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C6 — C12 — C3⋊C8 — C4.Dic3 |
Generators and relations for C4.Dic3
G = < a,b,c | a4=1, b6=a2, c2=a2b3, ab=ba, cac-1=a-1, cbc-1=b5 >
Character table of C4.Dic3
class | 1 | 2A | 2B | 3 | 4A | 4B | 4C | 6A | 6B | 6C | 8A | 8B | 8C | 8D | 12A | 12B | 12C | 12D | |
size | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | 6 | 6 | 6 | 6 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -i | i | -i | i | -1 | -1 | -1 | -1 | linear of order 4 |
ρ6 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | i | i | -i | -i | -1 | 1 | 1 | -1 | linear of order 4 |
ρ7 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -i | -i | i | i | -1 | 1 | 1 | -1 | linear of order 4 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | i | -i | i | -i | -1 | -1 | -1 | -1 | linear of order 4 |
ρ9 | 2 | 2 | 2 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ10 | 2 | 2 | -2 | -1 | 2 | 2 | -2 | 1 | 1 | -1 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | -1 | orthogonal lifted from D6 |
ρ11 | 2 | 2 | 2 | -1 | -2 | -2 | -2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | symplectic lifted from Dic3, Schur index 2 |
ρ12 | 2 | 2 | -2 | -1 | -2 | -2 | 2 | 1 | 1 | -1 | 0 | 0 | 0 | 0 | 1 | -1 | -1 | 1 | symplectic lifted from Dic3, Schur index 2 |
ρ13 | 2 | -2 | 0 | 2 | -2i | 2i | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | -2i | complex lifted from M4(2) |
ρ14 | 2 | -2 | 0 | 2 | 2i | -2i | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 2i | complex lifted from M4(2) |
ρ15 | 2 | -2 | 0 | -1 | -2i | 2i | 0 | -√-3 | √-3 | 1 | 0 | 0 | 0 | 0 | -i | -√3 | √3 | i | complex faithful |
ρ16 | 2 | -2 | 0 | -1 | 2i | -2i | 0 | √-3 | -√-3 | 1 | 0 | 0 | 0 | 0 | i | -√3 | √3 | -i | complex faithful |
ρ17 | 2 | -2 | 0 | -1 | 2i | -2i | 0 | -√-3 | √-3 | 1 | 0 | 0 | 0 | 0 | i | √3 | -√3 | -i | complex faithful |
ρ18 | 2 | -2 | 0 | -1 | -2i | 2i | 0 | √-3 | -√-3 | 1 | 0 | 0 | 0 | 0 | -i | √3 | -√3 | i | complex faithful |
(1 10 7 4)(2 11 8 5)(3 12 9 6)(13 16 19 22)(14 17 20 23)(15 18 21 24)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)
(1 16 10 13 7 22 4 19)(2 21 11 18 8 15 5 24)(3 14 12 23 9 20 6 17)
G:=sub<Sym(24)| (1,10,7,4)(2,11,8,5)(3,12,9,6)(13,16,19,22)(14,17,20,23)(15,18,21,24), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,16,10,13,7,22,4,19)(2,21,11,18,8,15,5,24)(3,14,12,23,9,20,6,17)>;
G:=Group( (1,10,7,4)(2,11,8,5)(3,12,9,6)(13,16,19,22)(14,17,20,23)(15,18,21,24), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,16,10,13,7,22,4,19)(2,21,11,18,8,15,5,24)(3,14,12,23,9,20,6,17) );
G=PermutationGroup([[(1,10,7,4),(2,11,8,5),(3,12,9,6),(13,16,19,22),(14,17,20,23),(15,18,21,24)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24)], [(1,16,10,13,7,22,4,19),(2,21,11,18,8,15,5,24),(3,14,12,23,9,20,6,17)]])
G:=TransitiveGroup(24,20);
C4.Dic3 is a maximal subgroup of
C42⋊4S3 C24.C4 C12.53D4 C12.46D4 C12.47D4 C12.D4 C12.10D4 Q8⋊3Dic3 C8○D12 S3×M4(2) D12⋊6C22 Q8.11D6 D4.Dic3 D4⋊D6 Q8.14D6 C4.Dic9 D6.Dic3 C12.58D6 A4⋊M4(2) U2(𝔽3)⋊C2 C20.32D6 C60.7C4 C12.F5 C15⋊8M4(2) C28.32D6 C84.C4 C33⋊4M4(2) C33⋊12M4(2)
C4.Dic3 is a maximal quotient of
C42.S3 C12⋊C8 C12.55D4 C4.Dic9 D6.Dic3 C12.58D6 A4⋊M4(2) C20.32D6 C60.7C4 C12.F5 C15⋊8M4(2) C28.32D6 C84.C4 C33⋊4M4(2) C33⋊12M4(2)
Matrix representation of C4.Dic3 ►in GL2(𝔽13) generated by
8 | 0 |
0 | 5 |
2 | 0 |
0 | 6 |
0 | 5 |
1 | 0 |
G:=sub<GL(2,GF(13))| [8,0,0,5],[2,0,0,6],[0,1,5,0] >;
C4.Dic3 in GAP, Magma, Sage, TeX
C_4.{\rm Dic}_3
% in TeX
G:=Group("C4.Dic3");
// GroupNames label
G:=SmallGroup(48,10);
// by ID
G=gap.SmallGroup(48,10);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-3,20,101,42,804]);
// Polycyclic
G:=Group<a,b,c|a^4=1,b^6=a^2,c^2=a^2*b^3,a*b=b*a,c*a*c^-1=a^-1,c*b*c^-1=b^5>;
// generators/relations
Export
Subgroup lattice of C4.Dic3 in TeX
Character table of C4.Dic3 in TeX