direct product, metabelian, nilpotent (class 2), monomial, 2-elementary
Aliases: C6×D4, C23⋊2C6, C12⋊4C22, C6.11C23, C4⋊(C2×C6), (C2×C4)⋊2C6, (C2×C12)⋊6C2, (C22×C6)⋊1C2, (C2×C6)⋊2C22, C22⋊2(C2×C6), C2.1(C22×C6), SmallGroup(48,45)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C6×D4
G = < a,b,c | a6=b4=c2=1, ab=ba, ac=ca, cbc=b-1 >
Subgroups: 70 in 54 conjugacy classes, 38 normal (10 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, C6, C6, C6, C2×C4, D4, C23, C12, C2×C6, C2×C6, C2×C6, C2×D4, C2×C12, C3×D4, C22×C6, C6×D4
Quotients: C1, C2, C3, C22, C6, D4, C23, C2×C6, C2×D4, C3×D4, C22×C6, C6×D4
Character table of C6×D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 4A | 4B | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 6J | 6K | 6L | 6M | 6N | 12A | 12B | 12C | 12D | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ9 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | ζ3 | ζ32 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ65 | ζ65 | ζ6 | ζ65 | ζ65 | ζ6 | ζ6 | ζ6 | ζ32 | ζ3 | ζ3 | ζ32 | linear of order 6 |
ρ10 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | ζ3 | ζ32 | 1 | -1 | ζ65 | ζ32 | ζ6 | ζ65 | ζ3 | ζ6 | ζ65 | ζ3 | ζ6 | ζ65 | ζ3 | ζ32 | ζ6 | ζ32 | ζ6 | ζ65 | ζ3 | ζ32 | linear of order 6 |
ρ11 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | ζ3 | ζ32 | -1 | 1 | ζ65 | ζ32 | ζ6 | ζ65 | ζ3 | ζ6 | ζ65 | ζ65 | ζ6 | ζ3 | ζ3 | ζ32 | ζ32 | ζ6 | ζ32 | ζ3 | ζ65 | ζ6 | linear of order 6 |
ρ12 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | ζ3 | ζ32 | -1 | -1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ65 | ζ3 | ζ6 | ζ3 | ζ65 | ζ6 | ζ32 | ζ32 | ζ6 | ζ65 | ζ65 | ζ6 | linear of order 6 |
ρ13 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | ζ32 | ζ3 | -1 | 1 | ζ6 | ζ3 | ζ65 | ζ6 | ζ32 | ζ65 | ζ6 | ζ6 | ζ65 | ζ32 | ζ32 | ζ3 | ζ3 | ζ65 | ζ3 | ζ32 | ζ6 | ζ65 | linear of order 6 |
ρ14 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | ζ32 | ζ3 | -1 | -1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ6 | ζ3 | ζ6 | ζ32 | ζ3 | ζ65 | ζ65 | ζ65 | ζ6 | ζ6 | ζ65 | linear of order 6 |
ρ15 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | ζ32 | ζ3 | 1 | -1 | ζ6 | ζ3 | ζ65 | ζ6 | ζ32 | ζ65 | ζ6 | ζ32 | ζ65 | ζ6 | ζ32 | ζ3 | ζ65 | ζ3 | ζ65 | ζ6 | ζ32 | ζ3 | linear of order 6 |
ρ16 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | linear of order 3 |
ρ17 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | ζ3 | ζ32 | -1 | 1 | ζ65 | ζ32 | ζ6 | ζ65 | ζ3 | ζ6 | ζ3 | ζ3 | ζ32 | ζ65 | ζ65 | ζ6 | ζ6 | ζ32 | ζ32 | ζ3 | ζ65 | ζ6 | linear of order 6 |
ρ18 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | ζ3 | ζ32 | -1 | -1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ65 | ζ32 | ζ65 | ζ3 | ζ32 | ζ6 | ζ6 | ζ6 | ζ65 | ζ65 | ζ6 | linear of order 6 |
ρ19 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | linear of order 3 |
ρ20 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | ζ3 | ζ32 | 1 | -1 | ζ65 | ζ32 | ζ6 | ζ65 | ζ3 | ζ6 | ζ3 | ζ65 | ζ32 | ζ3 | ζ65 | ζ6 | ζ32 | ζ6 | ζ6 | ζ65 | ζ3 | ζ32 | linear of order 6 |
ρ21 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | ζ32 | ζ3 | 1 | -1 | ζ6 | ζ3 | ζ65 | ζ6 | ζ32 | ζ65 | ζ32 | ζ6 | ζ3 | ζ32 | ζ6 | ζ65 | ζ3 | ζ65 | ζ65 | ζ6 | ζ32 | ζ3 | linear of order 6 |
ρ22 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | ζ32 | ζ3 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ6 | ζ6 | ζ65 | ζ6 | ζ6 | ζ65 | ζ65 | ζ65 | ζ3 | ζ32 | ζ32 | ζ3 | linear of order 6 |
ρ23 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | ζ32 | ζ3 | -1 | 1 | ζ6 | ζ3 | ζ65 | ζ6 | ζ32 | ζ65 | ζ32 | ζ32 | ζ3 | ζ6 | ζ6 | ζ65 | ζ65 | ζ3 | ζ3 | ζ32 | ζ6 | ζ65 | linear of order 6 |
ρ24 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | ζ32 | ζ3 | -1 | -1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ6 | ζ32 | ζ65 | ζ32 | ζ6 | ζ65 | ζ3 | ζ3 | ζ65 | ζ6 | ζ6 | ζ65 | linear of order 6 |
ρ25 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | -2 | -2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ26 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 2 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ27 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -1-√-3 | -1+√-3 | 0 | 0 | 1+√-3 | 1-√-3 | -1+√-3 | -1-√-3 | 1+√-3 | 1-√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3×D4 |
ρ28 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -1-√-3 | -1+√-3 | 0 | 0 | -1-√-3 | 1-√-3 | 1-√-3 | 1+√-3 | 1+√-3 | -1+√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3×D4 |
ρ29 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -1+√-3 | -1-√-3 | 0 | 0 | 1-√-3 | 1+√-3 | -1-√-3 | -1+√-3 | 1-√-3 | 1+√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3×D4 |
ρ30 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -1+√-3 | -1-√-3 | 0 | 0 | -1+√-3 | 1+√-3 | 1+√-3 | 1-√-3 | 1-√-3 | -1-√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3×D4 |
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)
(1 8 14 19)(2 9 15 20)(3 10 16 21)(4 11 17 22)(5 12 18 23)(6 7 13 24)
(1 19)(2 20)(3 21)(4 22)(5 23)(6 24)(7 13)(8 14)(9 15)(10 16)(11 17)(12 18)
G:=sub<Sym(24)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,8,14,19)(2,9,15,20)(3,10,16,21)(4,11,17,22)(5,12,18,23)(6,7,13,24), (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,13)(8,14)(9,15)(10,16)(11,17)(12,18)>;
G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,8,14,19)(2,9,15,20)(3,10,16,21)(4,11,17,22)(5,12,18,23)(6,7,13,24), (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,13)(8,14)(9,15)(10,16)(11,17)(12,18) );
G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24)], [(1,8,14,19),(2,9,15,20),(3,10,16,21),(4,11,17,22),(5,12,18,23),(6,7,13,24)], [(1,19),(2,20),(3,21),(4,22),(5,23),(6,24),(7,13),(8,14),(9,15),(10,16),(11,17),(12,18)]])
G:=TransitiveGroup(24,38);
C6×D4 is a maximal subgroup of
D4⋊Dic3 C12.D4 C23.7D6 D12⋊6C22 C23.23D6 C23.12D6 C23⋊2D6 D6⋊3D4 C23.14D6 C12⋊3D4 D4⋊6D6
Matrix representation of C6×D4 ►in GL3(𝔽13) generated by
4 | 0 | 0 |
0 | 12 | 0 |
0 | 0 | 12 |
1 | 0 | 0 |
0 | 12 | 11 |
0 | 1 | 1 |
1 | 0 | 0 |
0 | 12 | 11 |
0 | 0 | 1 |
G:=sub<GL(3,GF(13))| [4,0,0,0,12,0,0,0,12],[1,0,0,0,12,1,0,11,1],[1,0,0,0,12,0,0,11,1] >;
C6×D4 in GAP, Magma, Sage, TeX
C_6\times D_4
% in TeX
G:=Group("C6xD4");
// GroupNames label
G:=SmallGroup(48,45);
// by ID
G=gap.SmallGroup(48,45);
# by ID
G:=PCGroup([5,-2,-2,-2,-3,-2,261]);
// Polycyclic
G:=Group<a,b,c|a^6=b^4=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations
Export