Extensions 1→N→G→Q→1 with N=C4 and Q=S3xA4

Direct product G=NxQ with N=C4 and Q=S3xA4
dρLabelID
C4xS3xA4366C4xS3xA4288,919

Semidirect products G=N:Q with N=C4 and Q=S3xA4
extensionφ:Q→Aut NdρLabelID
C4:(S3xA4) = A4xD12φ: S3xA4/C3xA4C2 ⊆ Aut C4366+C4:(S3xA4)288,920

Non-split extensions G=N.Q with N=C4 and Q=S3xA4
extensionφ:Q→Aut NdρLabelID
C4.1(S3xA4) = A4xDic6φ: S3xA4/C3xA4C2 ⊆ Aut C4726-C4.1(S3xA4)288,918
C4.2(S3xA4) = Dic6.A4φ: S3xA4/C3xA4C2 ⊆ Aut C4724+C4.2(S3xA4)288,924
C4.3(S3xA4) = D12.A4φ: S3xA4/C3xA4C2 ⊆ Aut C4484-C4.3(S3xA4)288,926
C4.4(S3xA4) = A4xC3:C8central extension (φ=1)726C4.4(S3xA4)288,408
C4.5(S3xA4) = SL2(F3).Dic3central extension (φ=1)964C4.5(S3xA4)288,410
C4.6(S3xA4) = S3xC4.A4central extension (φ=1)484C4.6(S3xA4)288,925

׿
x
:
Z
F
o
wr
Q
<