Extensions 1→N→G→Q→1 with N=C4 and Q=S3×A4

Direct product G=N×Q with N=C4 and Q=S3×A4
dρLabelID
C4×S3×A4366C4xS3xA4288,919

Semidirect products G=N:Q with N=C4 and Q=S3×A4
extensionφ:Q→Aut NdρLabelID
C4⋊(S3×A4) = A4×D12φ: S3×A4/C3×A4C2 ⊆ Aut C4366+C4:(S3xA4)288,920

Non-split extensions G=N.Q with N=C4 and Q=S3×A4
extensionφ:Q→Aut NdρLabelID
C4.1(S3×A4) = A4×Dic6φ: S3×A4/C3×A4C2 ⊆ Aut C4726-C4.1(S3xA4)288,918
C4.2(S3×A4) = Dic6.A4φ: S3×A4/C3×A4C2 ⊆ Aut C4724+C4.2(S3xA4)288,924
C4.3(S3×A4) = D12.A4φ: S3×A4/C3×A4C2 ⊆ Aut C4484-C4.3(S3xA4)288,926
C4.4(S3×A4) = A4×C3⋊C8central extension (φ=1)726C4.4(S3xA4)288,408
C4.5(S3×A4) = SL2(𝔽3).Dic3central extension (φ=1)964C4.5(S3xA4)288,410
C4.6(S3×A4) = S3×C4.A4central extension (φ=1)484C4.6(S3xA4)288,925

׿
×
𝔽