extension | φ:Q→Aut N | d | ρ | Label | ID |
(C6xC24).1C2 = C3xDic3:C8 | φ: C2/C1 → C2 ⊆ Aut C6xC24 | 96 | | (C6xC24).1C2 | 288,248 |
(C6xC24).2C2 = C3xC2.Dic12 | φ: C2/C1 → C2 ⊆ Aut C6xC24 | 96 | | (C6xC24).2C2 | 288,250 |
(C6xC24).3C2 = C12.30Dic6 | φ: C2/C1 → C2 ⊆ Aut C6xC24 | 288 | | (C6xC24).3C2 | 288,289 |
(C6xC24).4C2 = C6.4Dic12 | φ: C2/C1 → C2 ⊆ Aut C6xC24 | 288 | | (C6xC24).4C2 | 288,291 |
(C6xC24).5C2 = C32xQ8:C4 | φ: C2/C1 → C2 ⊆ Aut C6xC24 | 288 | | (C6xC24).5C2 | 288,321 |
(C6xC24).6C2 = C32xC4:C8 | φ: C2/C1 → C2 ⊆ Aut C6xC24 | 288 | | (C6xC24).6C2 | 288,323 |
(C6xC24).7C2 = C24:1Dic3 | φ: C2/C1 → C2 ⊆ Aut C6xC24 | 288 | | (C6xC24).7C2 | 288,293 |
(C6xC24).8C2 = C2xC32:5Q16 | φ: C2/C1 → C2 ⊆ Aut C6xC24 | 288 | | (C6xC24).8C2 | 288,762 |
(C6xC24).9C2 = C12.59D12 | φ: C2/C1 → C2 ⊆ Aut C6xC24 | 144 | | (C6xC24).9C2 | 288,294 |
(C6xC24).10C2 = C3xC24.C4 | φ: C2/C1 → C2 ⊆ Aut C6xC24 | 48 | 2 | (C6xC24).10C2 | 288,253 |
(C6xC24).11C2 = C3xC24:1C4 | φ: C2/C1 → C2 ⊆ Aut C6xC24 | 96 | | (C6xC24).11C2 | 288,252 |
(C6xC24).12C2 = C6xDic12 | φ: C2/C1 → C2 ⊆ Aut C6xC24 | 96 | | (C6xC24).12C2 | 288,676 |
(C6xC24).13C2 = C24:2Dic3 | φ: C2/C1 → C2 ⊆ Aut C6xC24 | 288 | | (C6xC24).13C2 | 288,292 |
(C6xC24).14C2 = C3xC8:Dic3 | φ: C2/C1 → C2 ⊆ Aut C6xC24 | 96 | | (C6xC24).14C2 | 288,251 |
(C6xC24).15C2 = C32xC2.D8 | φ: C2/C1 → C2 ⊆ Aut C6xC24 | 288 | | (C6xC24).15C2 | 288,325 |
(C6xC24).16C2 = Q16xC3xC6 | φ: C2/C1 → C2 ⊆ Aut C6xC24 | 288 | | (C6xC24).16C2 | 288,831 |
(C6xC24).17C2 = C32xC8.C4 | φ: C2/C1 → C2 ⊆ Aut C6xC24 | 144 | | (C6xC24).17C2 | 288,326 |
(C6xC24).18C2 = C6xC3:C16 | φ: C2/C1 → C2 ⊆ Aut C6xC24 | 96 | | (C6xC24).18C2 | 288,245 |
(C6xC24).19C2 = Dic3xC24 | φ: C2/C1 → C2 ⊆ Aut C6xC24 | 96 | | (C6xC24).19C2 | 288,247 |
(C6xC24).20C2 = C2xC24.S3 | φ: C2/C1 → C2 ⊆ Aut C6xC24 | 288 | | (C6xC24).20C2 | 288,286 |
(C6xC24).21C2 = C24.94D6 | φ: C2/C1 → C2 ⊆ Aut C6xC24 | 144 | | (C6xC24).21C2 | 288,287 |
(C6xC24).22C2 = C8xC3:Dic3 | φ: C2/C1 → C2 ⊆ Aut C6xC24 | 288 | | (C6xC24).22C2 | 288,288 |
(C6xC24).23C2 = C24:Dic3 | φ: C2/C1 → C2 ⊆ Aut C6xC24 | 288 | | (C6xC24).23C2 | 288,290 |
(C6xC24).24C2 = C3xC12.C8 | φ: C2/C1 → C2 ⊆ Aut C6xC24 | 48 | 2 | (C6xC24).24C2 | 288,246 |
(C6xC24).25C2 = C3xC24:C4 | φ: C2/C1 → C2 ⊆ Aut C6xC24 | 96 | | (C6xC24).25C2 | 288,249 |
(C6xC24).26C2 = C32xC4.Q8 | φ: C2/C1 → C2 ⊆ Aut C6xC24 | 288 | | (C6xC24).26C2 | 288,324 |
(C6xC24).27C2 = C32xC8:C4 | φ: C2/C1 → C2 ⊆ Aut C6xC24 | 288 | | (C6xC24).27C2 | 288,315 |
(C6xC24).28C2 = C32xM5(2) | φ: C2/C1 → C2 ⊆ Aut C6xC24 | 144 | | (C6xC24).28C2 | 288,328 |