Copied to
clipboard

G = C6×C24order 144 = 24·32

Abelian group of type [6,24]

direct product, abelian, monomial

Aliases: C6×C24, SmallGroup(144,104)

Series: Derived Chief Lower central Upper central

C1 — C6×C24
C1C2C4C12C3×C12C3×C24 — C6×C24
C1 — C6×C24
C1 — C6×C24

Generators and relations for C6×C24
 G = < a,b | a6=b24=1, ab=ba >

Subgroups: 66, all normal (14 characteristic)
C1, C2, C2, C3, C4, C22, C6, C8, C2×C4, C32, C12, C2×C6, C2×C8, C3×C6, C3×C6, C24, C2×C12, C3×C12, C62, C2×C24, C3×C24, C6×C12, C6×C24
Quotients: C1, C2, C3, C4, C22, C6, C8, C2×C4, C32, C12, C2×C6, C2×C8, C3×C6, C24, C2×C12, C3×C12, C62, C2×C24, C3×C24, C6×C12, C6×C24

Smallest permutation representation of C6×C24
Regular action on 144 points
Generators in S144
(1 126 91 41 120 71)(2 127 92 42 97 72)(3 128 93 43 98 49)(4 129 94 44 99 50)(5 130 95 45 100 51)(6 131 96 46 101 52)(7 132 73 47 102 53)(8 133 74 48 103 54)(9 134 75 25 104 55)(10 135 76 26 105 56)(11 136 77 27 106 57)(12 137 78 28 107 58)(13 138 79 29 108 59)(14 139 80 30 109 60)(15 140 81 31 110 61)(16 141 82 32 111 62)(17 142 83 33 112 63)(18 143 84 34 113 64)(19 144 85 35 114 65)(20 121 86 36 115 66)(21 122 87 37 116 67)(22 123 88 38 117 68)(23 124 89 39 118 69)(24 125 90 40 119 70)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)

G:=sub<Sym(144)| (1,126,91,41,120,71)(2,127,92,42,97,72)(3,128,93,43,98,49)(4,129,94,44,99,50)(5,130,95,45,100,51)(6,131,96,46,101,52)(7,132,73,47,102,53)(8,133,74,48,103,54)(9,134,75,25,104,55)(10,135,76,26,105,56)(11,136,77,27,106,57)(12,137,78,28,107,58)(13,138,79,29,108,59)(14,139,80,30,109,60)(15,140,81,31,110,61)(16,141,82,32,111,62)(17,142,83,33,112,63)(18,143,84,34,113,64)(19,144,85,35,114,65)(20,121,86,36,115,66)(21,122,87,37,116,67)(22,123,88,38,117,68)(23,124,89,39,118,69)(24,125,90,40,119,70), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)>;

G:=Group( (1,126,91,41,120,71)(2,127,92,42,97,72)(3,128,93,43,98,49)(4,129,94,44,99,50)(5,130,95,45,100,51)(6,131,96,46,101,52)(7,132,73,47,102,53)(8,133,74,48,103,54)(9,134,75,25,104,55)(10,135,76,26,105,56)(11,136,77,27,106,57)(12,137,78,28,107,58)(13,138,79,29,108,59)(14,139,80,30,109,60)(15,140,81,31,110,61)(16,141,82,32,111,62)(17,142,83,33,112,63)(18,143,84,34,113,64)(19,144,85,35,114,65)(20,121,86,36,115,66)(21,122,87,37,116,67)(22,123,88,38,117,68)(23,124,89,39,118,69)(24,125,90,40,119,70), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144) );

G=PermutationGroup([[(1,126,91,41,120,71),(2,127,92,42,97,72),(3,128,93,43,98,49),(4,129,94,44,99,50),(5,130,95,45,100,51),(6,131,96,46,101,52),(7,132,73,47,102,53),(8,133,74,48,103,54),(9,134,75,25,104,55),(10,135,76,26,105,56),(11,136,77,27,106,57),(12,137,78,28,107,58),(13,138,79,29,108,59),(14,139,80,30,109,60),(15,140,81,31,110,61),(16,141,82,32,111,62),(17,142,83,33,112,63),(18,143,84,34,113,64),(19,144,85,35,114,65),(20,121,86,36,115,66),(21,122,87,37,116,67),(22,123,88,38,117,68),(23,124,89,39,118,69),(24,125,90,40,119,70)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)]])

C6×C24 is a maximal subgroup of
C24.94D6  C12.30Dic6  C24⋊Dic3  C6.4Dic12  C242Dic3  C241Dic3  C12.59D12  C12.60D12  C62.84D4  C24.95D6  C24.78D6

144 conjugacy classes

class 1 2A2B2C3A···3H4A4B4C4D6A···6X8A···8H12A···12AF24A···24BL
order12223···344446···68···812···1224···24
size11111···111111···11···11···11···1

144 irreducible representations

dim111111111111
type+++
imageC1C2C2C3C4C4C6C6C8C12C12C24
kernelC6×C24C3×C24C6×C12C2×C24C3×C12C62C24C2×C12C3×C6C12C2×C6C6
# reps1218221688161664

Matrix representation of C6×C24 in GL2(𝔽73) generated by

650
072
,
100
03
G:=sub<GL(2,GF(73))| [65,0,0,72],[10,0,0,3] >;

C6×C24 in GAP, Magma, Sage, TeX

C_6\times C_{24}
% in TeX

G:=Group("C6xC24");
// GroupNames label

G:=SmallGroup(144,104);
// by ID

G=gap.SmallGroup(144,104);
# by ID

G:=PCGroup([6,-2,-2,-3,-3,-2,-2,216,88]);
// Polycyclic

G:=Group<a,b|a^6=b^24=1,a*b=b*a>;
// generators/relations

׿
×
𝔽