# Extensions 1→N→G→Q→1 with N=Q8×C18 and Q=C2

Direct product G=N×Q with N=Q8×C18 and Q=C2
dρLabelID
Q8×C2×C18288Q8xC2xC18288,369

Semidirect products G=N:Q with N=Q8×C18 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8×C18)⋊1C2 = C2×Q82D9φ: C2/C1C2 ⊆ Out Q8×C18144(Q8xC18):1C2288,152
(Q8×C18)⋊2C2 = C36.C23φ: C2/C1C2 ⊆ Out Q8×C181444(Q8xC18):2C2288,153
(Q8×C18)⋊3C2 = D183Q8φ: C2/C1C2 ⊆ Out Q8×C18144(Q8xC18):3C2288,156
(Q8×C18)⋊4C2 = C36.23D4φ: C2/C1C2 ⊆ Out Q8×C18144(Q8xC18):4C2288,157
(Q8×C18)⋊5C2 = C2×Q8×D9φ: C2/C1C2 ⊆ Out Q8×C18144(Q8xC18):5C2288,359
(Q8×C18)⋊6C2 = C2×Q83D9φ: C2/C1C2 ⊆ Out Q8×C18144(Q8xC18):6C2288,360
(Q8×C18)⋊7C2 = Q8.15D18φ: C2/C1C2 ⊆ Out Q8×C181444(Q8xC18):7C2288,361
(Q8×C18)⋊8C2 = C9×C22⋊Q8φ: C2/C1C2 ⊆ Out Q8×C18144(Q8xC18):8C2288,172
(Q8×C18)⋊9C2 = C9×C4.4D4φ: C2/C1C2 ⊆ Out Q8×C18144(Q8xC18):9C2288,174
(Q8×C18)⋊10C2 = SD16×C18φ: C2/C1C2 ⊆ Out Q8×C18144(Q8xC18):10C2288,183
(Q8×C18)⋊11C2 = C9×C8.C22φ: C2/C1C2 ⊆ Out Q8×C181444(Q8xC18):11C2288,187
(Q8×C18)⋊12C2 = C9×2- 1+4φ: C2/C1C2 ⊆ Out Q8×C181444(Q8xC18):12C2288,372
(Q8×C18)⋊13C2 = C4○D4×C18φ: trivial image144(Q8xC18):13C2288,370

Non-split extensions G=N.Q with N=Q8×C18 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8×C18).1C2 = C36.9D4φ: C2/C1C2 ⊆ Out Q8×C181444(Q8xC18).1C2288,42
(Q8×C18).2C2 = Q82Dic9φ: C2/C1C2 ⊆ Out Q8×C18288(Q8xC18).2C2288,43
(Q8×C18).3C2 = C2×C9⋊Q16φ: C2/C1C2 ⊆ Out Q8×C18288(Q8xC18).3C2288,151
(Q8×C18).4C2 = Dic9⋊Q8φ: C2/C1C2 ⊆ Out Q8×C18288(Q8xC18).4C2288,154
(Q8×C18).5C2 = Q8×Dic9φ: C2/C1C2 ⊆ Out Q8×C18288(Q8xC18).5C2288,155
(Q8×C18).6C2 = C9×C4.10D4φ: C2/C1C2 ⊆ Out Q8×C181444(Q8xC18).6C2288,51
(Q8×C18).7C2 = C9×Q8⋊C4φ: C2/C1C2 ⊆ Out Q8×C18288(Q8xC18).7C2288,53
(Q8×C18).8C2 = C9×C4⋊Q8φ: C2/C1C2 ⊆ Out Q8×C18288(Q8xC18).8C2288,178
(Q8×C18).9C2 = Q16×C18φ: C2/C1C2 ⊆ Out Q8×C18288(Q8xC18).9C2288,184
(Q8×C18).10C2 = Q8×C36φ: trivial image288(Q8xC18).10C2288,169

׿
×
𝔽