Copied to
clipboard

G = C36.23D4order 288 = 25·32

23rd non-split extension by C36 of D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C36.23D4, (C2×Q8)⋊6D9, (Q8×C18)⋊4C2, D18⋊C416C2, (C4×Dic9)⋊7C2, (C2×D36).9C2, (C2×C4).57D18, (C2×C12).66D6, C18.58(C2×D4), C94(C4.4D4), (C6×Q8).17S3, C4.11(C9⋊D4), C18.37(C4○D4), C12.20(C3⋊D4), (C2×C36).64C22, (C2×C18).59C23, C3.(C12.23D4), C2.9(Q83D9), C6.45(Q83S3), C22.65(C22×D9), (C2×Dic9).43C22, (C22×D9).13C22, C2.22(C2×C9⋊D4), C6.106(C2×C3⋊D4), (C2×C6).216(C22×S3), SmallGroup(288,157)

Series: Derived Chief Lower central Upper central

C1C2×C18 — C36.23D4
C1C3C9C18C2×C18C22×D9C2×D36 — C36.23D4
C9C2×C18 — C36.23D4
C1C22C2×Q8

Generators and relations for C36.23D4
 G = < a,b,c | a36=b4=c2=1, bab-1=a17, cac=a-1, cbc=a18b-1 >

Subgroups: 564 in 114 conjugacy classes, 44 normal (18 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C9, Dic3, C12, C12, D6, C2×C6, C42, C22⋊C4, C2×D4, C2×Q8, D9, C18, C18, D12, C2×Dic3, C2×C12, C2×C12, C3×Q8, C22×S3, C4.4D4, Dic9, C36, C36, D18, C2×C18, C4×Dic3, D6⋊C4, C2×D12, C6×Q8, D36, C2×Dic9, C2×C36, C2×C36, Q8×C9, C22×D9, C12.23D4, C4×Dic9, D18⋊C4, C2×D36, Q8×C18, C36.23D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, D9, C3⋊D4, C22×S3, C4.4D4, D18, Q83S3, C2×C3⋊D4, C9⋊D4, C22×D9, C12.23D4, Q83D9, C2×C9⋊D4, C36.23D4

Smallest permutation representation of C36.23D4
On 144 points
Generators in S144
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 92 54 120)(2 73 55 137)(3 90 56 118)(4 107 57 135)(5 88 58 116)(6 105 59 133)(7 86 60 114)(8 103 61 131)(9 84 62 112)(10 101 63 129)(11 82 64 110)(12 99 65 127)(13 80 66 144)(14 97 67 125)(15 78 68 142)(16 95 69 123)(17 76 70 140)(18 93 71 121)(19 74 72 138)(20 91 37 119)(21 108 38 136)(22 89 39 117)(23 106 40 134)(24 87 41 115)(25 104 42 132)(26 85 43 113)(27 102 44 130)(28 83 45 111)(29 100 46 128)(30 81 47 109)(31 98 48 126)(32 79 49 143)(33 96 50 124)(34 77 51 141)(35 94 52 122)(36 75 53 139)
(2 36)(3 35)(4 34)(5 33)(6 32)(7 31)(8 30)(9 29)(10 28)(11 27)(12 26)(13 25)(14 24)(15 23)(16 22)(17 21)(18 20)(37 71)(38 70)(39 69)(40 68)(41 67)(42 66)(43 65)(44 64)(45 63)(46 62)(47 61)(48 60)(49 59)(50 58)(51 57)(52 56)(53 55)(73 121)(74 120)(75 119)(76 118)(77 117)(78 116)(79 115)(80 114)(81 113)(82 112)(83 111)(84 110)(85 109)(86 144)(87 143)(88 142)(89 141)(90 140)(91 139)(92 138)(93 137)(94 136)(95 135)(96 134)(97 133)(98 132)(99 131)(100 130)(101 129)(102 128)(103 127)(104 126)(105 125)(106 124)(107 123)(108 122)

G:=sub<Sym(144)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,92,54,120)(2,73,55,137)(3,90,56,118)(4,107,57,135)(5,88,58,116)(6,105,59,133)(7,86,60,114)(8,103,61,131)(9,84,62,112)(10,101,63,129)(11,82,64,110)(12,99,65,127)(13,80,66,144)(14,97,67,125)(15,78,68,142)(16,95,69,123)(17,76,70,140)(18,93,71,121)(19,74,72,138)(20,91,37,119)(21,108,38,136)(22,89,39,117)(23,106,40,134)(24,87,41,115)(25,104,42,132)(26,85,43,113)(27,102,44,130)(28,83,45,111)(29,100,46,128)(30,81,47,109)(31,98,48,126)(32,79,49,143)(33,96,50,124)(34,77,51,141)(35,94,52,122)(36,75,53,139), (2,36)(3,35)(4,34)(5,33)(6,32)(7,31)(8,30)(9,29)(10,28)(11,27)(12,26)(13,25)(14,24)(15,23)(16,22)(17,21)(18,20)(37,71)(38,70)(39,69)(40,68)(41,67)(42,66)(43,65)(44,64)(45,63)(46,62)(47,61)(48,60)(49,59)(50,58)(51,57)(52,56)(53,55)(73,121)(74,120)(75,119)(76,118)(77,117)(78,116)(79,115)(80,114)(81,113)(82,112)(83,111)(84,110)(85,109)(86,144)(87,143)(88,142)(89,141)(90,140)(91,139)(92,138)(93,137)(94,136)(95,135)(96,134)(97,133)(98,132)(99,131)(100,130)(101,129)(102,128)(103,127)(104,126)(105,125)(106,124)(107,123)(108,122)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,92,54,120)(2,73,55,137)(3,90,56,118)(4,107,57,135)(5,88,58,116)(6,105,59,133)(7,86,60,114)(8,103,61,131)(9,84,62,112)(10,101,63,129)(11,82,64,110)(12,99,65,127)(13,80,66,144)(14,97,67,125)(15,78,68,142)(16,95,69,123)(17,76,70,140)(18,93,71,121)(19,74,72,138)(20,91,37,119)(21,108,38,136)(22,89,39,117)(23,106,40,134)(24,87,41,115)(25,104,42,132)(26,85,43,113)(27,102,44,130)(28,83,45,111)(29,100,46,128)(30,81,47,109)(31,98,48,126)(32,79,49,143)(33,96,50,124)(34,77,51,141)(35,94,52,122)(36,75,53,139), (2,36)(3,35)(4,34)(5,33)(6,32)(7,31)(8,30)(9,29)(10,28)(11,27)(12,26)(13,25)(14,24)(15,23)(16,22)(17,21)(18,20)(37,71)(38,70)(39,69)(40,68)(41,67)(42,66)(43,65)(44,64)(45,63)(46,62)(47,61)(48,60)(49,59)(50,58)(51,57)(52,56)(53,55)(73,121)(74,120)(75,119)(76,118)(77,117)(78,116)(79,115)(80,114)(81,113)(82,112)(83,111)(84,110)(85,109)(86,144)(87,143)(88,142)(89,141)(90,140)(91,139)(92,138)(93,137)(94,136)(95,135)(96,134)(97,133)(98,132)(99,131)(100,130)(101,129)(102,128)(103,127)(104,126)(105,125)(106,124)(107,123)(108,122) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,92,54,120),(2,73,55,137),(3,90,56,118),(4,107,57,135),(5,88,58,116),(6,105,59,133),(7,86,60,114),(8,103,61,131),(9,84,62,112),(10,101,63,129),(11,82,64,110),(12,99,65,127),(13,80,66,144),(14,97,67,125),(15,78,68,142),(16,95,69,123),(17,76,70,140),(18,93,71,121),(19,74,72,138),(20,91,37,119),(21,108,38,136),(22,89,39,117),(23,106,40,134),(24,87,41,115),(25,104,42,132),(26,85,43,113),(27,102,44,130),(28,83,45,111),(29,100,46,128),(30,81,47,109),(31,98,48,126),(32,79,49,143),(33,96,50,124),(34,77,51,141),(35,94,52,122),(36,75,53,139)], [(2,36),(3,35),(4,34),(5,33),(6,32),(7,31),(8,30),(9,29),(10,28),(11,27),(12,26),(13,25),(14,24),(15,23),(16,22),(17,21),(18,20),(37,71),(38,70),(39,69),(40,68),(41,67),(42,66),(43,65),(44,64),(45,63),(46,62),(47,61),(48,60),(49,59),(50,58),(51,57),(52,56),(53,55),(73,121),(74,120),(75,119),(76,118),(77,117),(78,116),(79,115),(80,114),(81,113),(82,112),(83,111),(84,110),(85,109),(86,144),(87,143),(88,142),(89,141),(90,140),(91,139),(92,138),(93,137),(94,136),(95,135),(96,134),(97,133),(98,132),(99,131),(100,130),(101,129),(102,128),(103,127),(104,126),(105,125),(106,124),(107,123),(108,122)]])

54 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F4G4H6A6B6C9A9B9C12A···12F18A···18I36A···36R
order12222234444444466699912···1218···1836···36
size1111363622244181818182222224···42···24···4

54 irreducible representations

dim111112222222244
type++++++++++++
imageC1C2C2C2C2S3D4D6C4○D4D9C3⋊D4D18C9⋊D4Q83S3Q83D9
kernelC36.23D4C4×Dic9D18⋊C4C2×D36Q8×C18C6×Q8C36C2×C12C18C2×Q8C12C2×C4C4C6C2
# reps1141112343491226

Matrix representation of C36.23D4 in GL6(𝔽37)

3600000
0360000
0061100
00261700
000014
00001836
,
2160000
25160000
000100
001000
00003113
000036
,
100000
30360000
000100
001000
000010
00001836

G:=sub<GL(6,GF(37))| [36,0,0,0,0,0,0,36,0,0,0,0,0,0,6,26,0,0,0,0,11,17,0,0,0,0,0,0,1,18,0,0,0,0,4,36],[21,25,0,0,0,0,6,16,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,31,3,0,0,0,0,13,6],[1,30,0,0,0,0,0,36,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,18,0,0,0,0,0,36] >;

C36.23D4 in GAP, Magma, Sage, TeX

C_{36}._{23}D_4
% in TeX

G:=Group("C36.23D4");
// GroupNames label

G:=SmallGroup(288,157);
// by ID

G=gap.SmallGroup(288,157);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,253,120,254,219,100,6725,292,9414]);
// Polycyclic

G:=Group<a,b,c|a^36=b^4=c^2=1,b*a*b^-1=a^17,c*a*c=a^-1,c*b*c=a^18*b^-1>;
// generators/relations

׿
×
𝔽