Copied to
clipboard

G = C9×2- 1+4order 288 = 25·32

Direct product of C9 and 2- 1+4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C9×2- 1+4, C18.20C24, C36.53C23, C4○D46C18, (C2×Q8)⋊7C18, (Q8×C18)⋊12C2, D4.4(C2×C18), (C6×Q8).24C6, Q8.7(C2×C18), C2.5(C23×C18), C6.20(C23×C6), (C2×C18).8C23, C3.(C3×2- 1+4), C4.10(C22×C18), (C2×C36).69C22, C12.54(C22×C6), (D4×C9).14C22, (Q8×C9).15C22, C22.2(C22×C18), (C3×2- 1+4).2C3, (C9×C4○D4)⋊9C2, (C2×C4).6(C2×C18), (C2×C12).70(C2×C6), (C3×C4○D4).18C6, (C3×D4).22(C2×C6), (C3×Q8).35(C2×C6), (C2×C6).10(C22×C6), SmallGroup(288,372)

Series: Derived Chief Lower central Upper central

C1C2 — C9×2- 1+4
C1C3C6C18C2×C18D4×C9C9×C4○D4 — C9×2- 1+4
C1C2 — C9×2- 1+4
C1C18 — C9×2- 1+4

Generators and relations for C9×2- 1+4
 G = < a,b,c,d,e | a9=b4=c2=1, d2=e2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede-1=b2d >

Subgroups: 234 in 219 conjugacy classes, 204 normal (9 characteristic)
C1, C2, C2, C3, C4, C22, C6, C6, C2×C4, D4, Q8, C9, C12, C2×C6, C2×Q8, C4○D4, C18, C18, C2×C12, C3×D4, C3×Q8, 2- 1+4, C36, C2×C18, C6×Q8, C3×C4○D4, C2×C36, D4×C9, Q8×C9, C3×2- 1+4, Q8×C18, C9×C4○D4, C9×2- 1+4
Quotients: C1, C2, C3, C22, C6, C23, C9, C2×C6, C24, C18, C22×C6, 2- 1+4, C2×C18, C23×C6, C22×C18, C3×2- 1+4, C23×C18, C9×2- 1+4

Smallest permutation representation of C9×2- 1+4
On 144 points
Generators in S144
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117)(118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135)(136 137 138 139 140 141 142 143 144)
(1 106 23 113)(2 107 24 114)(3 108 25 115)(4 100 26 116)(5 101 27 117)(6 102 19 109)(7 103 20 110)(8 104 21 111)(9 105 22 112)(10 48 138 55)(11 49 139 56)(12 50 140 57)(13 51 141 58)(14 52 142 59)(15 53 143 60)(16 54 144 61)(17 46 136 62)(18 47 137 63)(28 98 44 82)(29 99 45 83)(30 91 37 84)(31 92 38 85)(32 93 39 86)(33 94 40 87)(34 95 41 88)(35 96 42 89)(36 97 43 90)(64 134 80 118)(65 135 81 119)(66 127 73 120)(67 128 74 121)(68 129 75 122)(69 130 76 123)(70 131 77 124)(71 132 78 125)(72 133 79 126)
(1 34)(2 35)(3 36)(4 28)(5 29)(6 30)(7 31)(8 32)(9 33)(10 127)(11 128)(12 129)(13 130)(14 131)(15 132)(16 133)(17 134)(18 135)(19 37)(20 38)(21 39)(22 40)(23 41)(24 42)(25 43)(26 44)(27 45)(46 64)(47 65)(48 66)(49 67)(50 68)(51 69)(52 70)(53 71)(54 72)(55 73)(56 74)(57 75)(58 76)(59 77)(60 78)(61 79)(62 80)(63 81)(82 100)(83 101)(84 102)(85 103)(86 104)(87 105)(88 106)(89 107)(90 108)(91 109)(92 110)(93 111)(94 112)(95 113)(96 114)(97 115)(98 116)(99 117)(118 136)(119 137)(120 138)(121 139)(122 140)(123 141)(124 142)(125 143)(126 144)
(1 77 23 70)(2 78 24 71)(3 79 25 72)(4 80 26 64)(5 81 27 65)(6 73 19 66)(7 74 20 67)(8 75 21 68)(9 76 22 69)(10 84 138 91)(11 85 139 92)(12 86 140 93)(13 87 141 94)(14 88 142 95)(15 89 143 96)(16 90 144 97)(17 82 136 98)(18 83 137 99)(28 62 44 46)(29 63 45 47)(30 55 37 48)(31 56 38 49)(32 57 39 50)(33 58 40 51)(34 59 41 52)(35 60 42 53)(36 61 43 54)(100 118 116 134)(101 119 117 135)(102 120 109 127)(103 121 110 128)(104 122 111 129)(105 123 112 130)(106 124 113 131)(107 125 114 132)(108 126 115 133)
(1 131 23 124)(2 132 24 125)(3 133 25 126)(4 134 26 118)(5 135 27 119)(6 127 19 120)(7 128 20 121)(8 129 21 122)(9 130 22 123)(10 37 138 30)(11 38 139 31)(12 39 140 32)(13 40 141 33)(14 41 142 34)(15 42 143 35)(16 43 144 36)(17 44 136 28)(18 45 137 29)(46 82 62 98)(47 83 63 99)(48 84 55 91)(49 85 56 92)(50 86 57 93)(51 87 58 94)(52 88 59 95)(53 89 60 96)(54 90 61 97)(64 100 80 116)(65 101 81 117)(66 102 73 109)(67 103 74 110)(68 104 75 111)(69 105 76 112)(70 106 77 113)(71 107 78 114)(72 108 79 115)

G:=sub<Sym(144)| (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144), (1,106,23,113)(2,107,24,114)(3,108,25,115)(4,100,26,116)(5,101,27,117)(6,102,19,109)(7,103,20,110)(8,104,21,111)(9,105,22,112)(10,48,138,55)(11,49,139,56)(12,50,140,57)(13,51,141,58)(14,52,142,59)(15,53,143,60)(16,54,144,61)(17,46,136,62)(18,47,137,63)(28,98,44,82)(29,99,45,83)(30,91,37,84)(31,92,38,85)(32,93,39,86)(33,94,40,87)(34,95,41,88)(35,96,42,89)(36,97,43,90)(64,134,80,118)(65,135,81,119)(66,127,73,120)(67,128,74,121)(68,129,75,122)(69,130,76,123)(70,131,77,124)(71,132,78,125)(72,133,79,126), (1,34)(2,35)(3,36)(4,28)(5,29)(6,30)(7,31)(8,32)(9,33)(10,127)(11,128)(12,129)(13,130)(14,131)(15,132)(16,133)(17,134)(18,135)(19,37)(20,38)(21,39)(22,40)(23,41)(24,42)(25,43)(26,44)(27,45)(46,64)(47,65)(48,66)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72)(55,73)(56,74)(57,75)(58,76)(59,77)(60,78)(61,79)(62,80)(63,81)(82,100)(83,101)(84,102)(85,103)(86,104)(87,105)(88,106)(89,107)(90,108)(91,109)(92,110)(93,111)(94,112)(95,113)(96,114)(97,115)(98,116)(99,117)(118,136)(119,137)(120,138)(121,139)(122,140)(123,141)(124,142)(125,143)(126,144), (1,77,23,70)(2,78,24,71)(3,79,25,72)(4,80,26,64)(5,81,27,65)(6,73,19,66)(7,74,20,67)(8,75,21,68)(9,76,22,69)(10,84,138,91)(11,85,139,92)(12,86,140,93)(13,87,141,94)(14,88,142,95)(15,89,143,96)(16,90,144,97)(17,82,136,98)(18,83,137,99)(28,62,44,46)(29,63,45,47)(30,55,37,48)(31,56,38,49)(32,57,39,50)(33,58,40,51)(34,59,41,52)(35,60,42,53)(36,61,43,54)(100,118,116,134)(101,119,117,135)(102,120,109,127)(103,121,110,128)(104,122,111,129)(105,123,112,130)(106,124,113,131)(107,125,114,132)(108,126,115,133), (1,131,23,124)(2,132,24,125)(3,133,25,126)(4,134,26,118)(5,135,27,119)(6,127,19,120)(7,128,20,121)(8,129,21,122)(9,130,22,123)(10,37,138,30)(11,38,139,31)(12,39,140,32)(13,40,141,33)(14,41,142,34)(15,42,143,35)(16,43,144,36)(17,44,136,28)(18,45,137,29)(46,82,62,98)(47,83,63,99)(48,84,55,91)(49,85,56,92)(50,86,57,93)(51,87,58,94)(52,88,59,95)(53,89,60,96)(54,90,61,97)(64,100,80,116)(65,101,81,117)(66,102,73,109)(67,103,74,110)(68,104,75,111)(69,105,76,112)(70,106,77,113)(71,107,78,114)(72,108,79,115)>;

G:=Group( (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144), (1,106,23,113)(2,107,24,114)(3,108,25,115)(4,100,26,116)(5,101,27,117)(6,102,19,109)(7,103,20,110)(8,104,21,111)(9,105,22,112)(10,48,138,55)(11,49,139,56)(12,50,140,57)(13,51,141,58)(14,52,142,59)(15,53,143,60)(16,54,144,61)(17,46,136,62)(18,47,137,63)(28,98,44,82)(29,99,45,83)(30,91,37,84)(31,92,38,85)(32,93,39,86)(33,94,40,87)(34,95,41,88)(35,96,42,89)(36,97,43,90)(64,134,80,118)(65,135,81,119)(66,127,73,120)(67,128,74,121)(68,129,75,122)(69,130,76,123)(70,131,77,124)(71,132,78,125)(72,133,79,126), (1,34)(2,35)(3,36)(4,28)(5,29)(6,30)(7,31)(8,32)(9,33)(10,127)(11,128)(12,129)(13,130)(14,131)(15,132)(16,133)(17,134)(18,135)(19,37)(20,38)(21,39)(22,40)(23,41)(24,42)(25,43)(26,44)(27,45)(46,64)(47,65)(48,66)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72)(55,73)(56,74)(57,75)(58,76)(59,77)(60,78)(61,79)(62,80)(63,81)(82,100)(83,101)(84,102)(85,103)(86,104)(87,105)(88,106)(89,107)(90,108)(91,109)(92,110)(93,111)(94,112)(95,113)(96,114)(97,115)(98,116)(99,117)(118,136)(119,137)(120,138)(121,139)(122,140)(123,141)(124,142)(125,143)(126,144), (1,77,23,70)(2,78,24,71)(3,79,25,72)(4,80,26,64)(5,81,27,65)(6,73,19,66)(7,74,20,67)(8,75,21,68)(9,76,22,69)(10,84,138,91)(11,85,139,92)(12,86,140,93)(13,87,141,94)(14,88,142,95)(15,89,143,96)(16,90,144,97)(17,82,136,98)(18,83,137,99)(28,62,44,46)(29,63,45,47)(30,55,37,48)(31,56,38,49)(32,57,39,50)(33,58,40,51)(34,59,41,52)(35,60,42,53)(36,61,43,54)(100,118,116,134)(101,119,117,135)(102,120,109,127)(103,121,110,128)(104,122,111,129)(105,123,112,130)(106,124,113,131)(107,125,114,132)(108,126,115,133), (1,131,23,124)(2,132,24,125)(3,133,25,126)(4,134,26,118)(5,135,27,119)(6,127,19,120)(7,128,20,121)(8,129,21,122)(9,130,22,123)(10,37,138,30)(11,38,139,31)(12,39,140,32)(13,40,141,33)(14,41,142,34)(15,42,143,35)(16,43,144,36)(17,44,136,28)(18,45,137,29)(46,82,62,98)(47,83,63,99)(48,84,55,91)(49,85,56,92)(50,86,57,93)(51,87,58,94)(52,88,59,95)(53,89,60,96)(54,90,61,97)(64,100,80,116)(65,101,81,117)(66,102,73,109)(67,103,74,110)(68,104,75,111)(69,105,76,112)(70,106,77,113)(71,107,78,114)(72,108,79,115) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117),(118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135),(136,137,138,139,140,141,142,143,144)], [(1,106,23,113),(2,107,24,114),(3,108,25,115),(4,100,26,116),(5,101,27,117),(6,102,19,109),(7,103,20,110),(8,104,21,111),(9,105,22,112),(10,48,138,55),(11,49,139,56),(12,50,140,57),(13,51,141,58),(14,52,142,59),(15,53,143,60),(16,54,144,61),(17,46,136,62),(18,47,137,63),(28,98,44,82),(29,99,45,83),(30,91,37,84),(31,92,38,85),(32,93,39,86),(33,94,40,87),(34,95,41,88),(35,96,42,89),(36,97,43,90),(64,134,80,118),(65,135,81,119),(66,127,73,120),(67,128,74,121),(68,129,75,122),(69,130,76,123),(70,131,77,124),(71,132,78,125),(72,133,79,126)], [(1,34),(2,35),(3,36),(4,28),(5,29),(6,30),(7,31),(8,32),(9,33),(10,127),(11,128),(12,129),(13,130),(14,131),(15,132),(16,133),(17,134),(18,135),(19,37),(20,38),(21,39),(22,40),(23,41),(24,42),(25,43),(26,44),(27,45),(46,64),(47,65),(48,66),(49,67),(50,68),(51,69),(52,70),(53,71),(54,72),(55,73),(56,74),(57,75),(58,76),(59,77),(60,78),(61,79),(62,80),(63,81),(82,100),(83,101),(84,102),(85,103),(86,104),(87,105),(88,106),(89,107),(90,108),(91,109),(92,110),(93,111),(94,112),(95,113),(96,114),(97,115),(98,116),(99,117),(118,136),(119,137),(120,138),(121,139),(122,140),(123,141),(124,142),(125,143),(126,144)], [(1,77,23,70),(2,78,24,71),(3,79,25,72),(4,80,26,64),(5,81,27,65),(6,73,19,66),(7,74,20,67),(8,75,21,68),(9,76,22,69),(10,84,138,91),(11,85,139,92),(12,86,140,93),(13,87,141,94),(14,88,142,95),(15,89,143,96),(16,90,144,97),(17,82,136,98),(18,83,137,99),(28,62,44,46),(29,63,45,47),(30,55,37,48),(31,56,38,49),(32,57,39,50),(33,58,40,51),(34,59,41,52),(35,60,42,53),(36,61,43,54),(100,118,116,134),(101,119,117,135),(102,120,109,127),(103,121,110,128),(104,122,111,129),(105,123,112,130),(106,124,113,131),(107,125,114,132),(108,126,115,133)], [(1,131,23,124),(2,132,24,125),(3,133,25,126),(4,134,26,118),(5,135,27,119),(6,127,19,120),(7,128,20,121),(8,129,21,122),(9,130,22,123),(10,37,138,30),(11,38,139,31),(12,39,140,32),(13,40,141,33),(14,41,142,34),(15,42,143,35),(16,43,144,36),(17,44,136,28),(18,45,137,29),(46,82,62,98),(47,83,63,99),(48,84,55,91),(49,85,56,92),(50,86,57,93),(51,87,58,94),(52,88,59,95),(53,89,60,96),(54,90,61,97),(64,100,80,116),(65,101,81,117),(66,102,73,109),(67,103,74,110),(68,104,75,111),(69,105,76,112),(70,106,77,113),(71,107,78,114),(72,108,79,115)]])

153 conjugacy classes

class 1 2A2B···2F3A3B4A···4J6A6B6C···6L9A···9F12A···12T18A···18F18G···18AJ36A···36BH
order122···2334···4666···69···912···1218···1818···1836···36
size112···2112···2112···21···12···21···12···22···2

153 irreducible representations

dim111111111444
type+++-
imageC1C2C2C3C6C6C9C18C182- 1+4C3×2- 1+4C9×2- 1+4
kernelC9×2- 1+4Q8×C18C9×C4○D4C3×2- 1+4C6×Q8C3×C4○D42- 1+4C2×Q8C4○D4C9C3C1
# reps15102102063060126

Matrix representation of C9×2- 1+4 in GL4(𝔽37) generated by

33000
03300
00330
00033
,
270190
3252722
200100
2221512
,
333500
26400
023114
265036
,
3302135
26034
18233623
31135
,
12303013
33143611
26835
3224368
G:=sub<GL(4,GF(37))| [33,0,0,0,0,33,0,0,0,0,33,0,0,0,0,33],[27,3,20,2,0,25,0,22,19,27,10,15,0,22,0,12],[33,26,0,26,35,4,23,5,0,0,1,0,0,0,14,36],[33,26,18,31,0,0,23,1,21,3,36,3,35,4,23,5],[12,33,26,32,30,14,8,24,30,36,3,36,13,11,5,8] >;

C9×2- 1+4 in GAP, Magma, Sage, TeX

C_9\times 2_-^{1+4}
% in TeX

G:=Group("C9xES-(2,2)");
// GroupNames label

G:=SmallGroup(288,372);
// by ID

G=gap.SmallGroup(288,372);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-2,-3,701,344,555,268,1571,242]);
// Polycyclic

G:=Group<a,b,c,d,e|a^9=b^4=c^2=1,d^2=e^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=b^2*d>;
// generators/relations

׿
×
𝔽