Copied to
clipboard

G = SD16×C18order 288 = 25·32

Direct product of C18 and SD16

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: SD16×C18, C36.43D4, C7213C22, C36.45C23, C83(C2×C18), (C2×C8)⋊5C18, C4.7(D4×C9), (C2×C72)⋊13C2, C3.(C6×SD16), Q82(C2×C18), (C2×Q8)⋊5C18, C6.75(C6×D4), (C6×SD16).C3, (C2×C24).26C6, C24.37(C2×C6), (Q8×C18)⋊10C2, (C6×D4).15C6, D4.1(C2×C18), (C2×D4).6C18, C2.12(D4×C18), C12.43(C3×D4), C18.75(C2×D4), (C2×C18).53D4, (C6×Q8).19C6, (Q8×C9)⋊9C22, (D4×C18).13C2, C4.2(C22×C18), (C3×SD16).3C6, C6.12(C3×SD16), C22.15(D4×C9), C12.45(C22×C6), (D4×C9).11C22, (C2×C36).128C22, (C2×C6).62(C3×D4), (C2×C4).27(C2×C18), (C3×D4).12(C2×C6), (C3×Q8).24(C2×C6), (C2×C12).145(C2×C6), SmallGroup(288,183)

Series: Derived Chief Lower central Upper central

C1C4 — SD16×C18
C1C2C6C12C36Q8×C9C9×SD16 — SD16×C18
C1C2C4 — SD16×C18
C1C2×C18C2×C36 — SD16×C18

Generators and relations for SD16×C18
 G = < a,b,c | a18=b8=c2=1, ab=ba, ac=ca, cbc=b3 >

Subgroups: 162 in 102 conjugacy classes, 66 normal (30 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C6, C6, C6, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C9, C12, C12, C2×C6, C2×C6, C2×C8, SD16, C2×D4, C2×Q8, C18, C18, C18, C24, C2×C12, C2×C12, C3×D4, C3×D4, C3×Q8, C3×Q8, C22×C6, C2×SD16, C36, C36, C2×C18, C2×C18, C2×C24, C3×SD16, C6×D4, C6×Q8, C72, C2×C36, C2×C36, D4×C9, D4×C9, Q8×C9, Q8×C9, C22×C18, C6×SD16, C2×C72, C9×SD16, D4×C18, Q8×C18, SD16×C18
Quotients: C1, C2, C3, C22, C6, D4, C23, C9, C2×C6, SD16, C2×D4, C18, C3×D4, C22×C6, C2×SD16, C2×C18, C3×SD16, C6×D4, D4×C9, C22×C18, C6×SD16, C9×SD16, D4×C18, SD16×C18

Smallest permutation representation of SD16×C18
On 144 points
Generators in S144
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 93 32 78 128 72 52 114)(2 94 33 79 129 55 53 115)(3 95 34 80 130 56 54 116)(4 96 35 81 131 57 37 117)(5 97 36 82 132 58 38 118)(6 98 19 83 133 59 39 119)(7 99 20 84 134 60 40 120)(8 100 21 85 135 61 41 121)(9 101 22 86 136 62 42 122)(10 102 23 87 137 63 43 123)(11 103 24 88 138 64 44 124)(12 104 25 89 139 65 45 125)(13 105 26 90 140 66 46 126)(14 106 27 73 141 67 47 109)(15 107 28 74 142 68 48 110)(16 108 29 75 143 69 49 111)(17 91 30 76 144 70 50 112)(18 92 31 77 127 71 51 113)
(19 39)(20 40)(21 41)(22 42)(23 43)(24 44)(25 45)(26 46)(27 47)(28 48)(29 49)(30 50)(31 51)(32 52)(33 53)(34 54)(35 37)(36 38)(55 115)(56 116)(57 117)(58 118)(59 119)(60 120)(61 121)(62 122)(63 123)(64 124)(65 125)(66 126)(67 109)(68 110)(69 111)(70 112)(71 113)(72 114)(73 106)(74 107)(75 108)(76 91)(77 92)(78 93)(79 94)(80 95)(81 96)(82 97)(83 98)(84 99)(85 100)(86 101)(87 102)(88 103)(89 104)(90 105)

G:=sub<Sym(144)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,93,32,78,128,72,52,114)(2,94,33,79,129,55,53,115)(3,95,34,80,130,56,54,116)(4,96,35,81,131,57,37,117)(5,97,36,82,132,58,38,118)(6,98,19,83,133,59,39,119)(7,99,20,84,134,60,40,120)(8,100,21,85,135,61,41,121)(9,101,22,86,136,62,42,122)(10,102,23,87,137,63,43,123)(11,103,24,88,138,64,44,124)(12,104,25,89,139,65,45,125)(13,105,26,90,140,66,46,126)(14,106,27,73,141,67,47,109)(15,107,28,74,142,68,48,110)(16,108,29,75,143,69,49,111)(17,91,30,76,144,70,50,112)(18,92,31,77,127,71,51,113), (19,39)(20,40)(21,41)(22,42)(23,43)(24,44)(25,45)(26,46)(27,47)(28,48)(29,49)(30,50)(31,51)(32,52)(33,53)(34,54)(35,37)(36,38)(55,115)(56,116)(57,117)(58,118)(59,119)(60,120)(61,121)(62,122)(63,123)(64,124)(65,125)(66,126)(67,109)(68,110)(69,111)(70,112)(71,113)(72,114)(73,106)(74,107)(75,108)(76,91)(77,92)(78,93)(79,94)(80,95)(81,96)(82,97)(83,98)(84,99)(85,100)(86,101)(87,102)(88,103)(89,104)(90,105)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,93,32,78,128,72,52,114)(2,94,33,79,129,55,53,115)(3,95,34,80,130,56,54,116)(4,96,35,81,131,57,37,117)(5,97,36,82,132,58,38,118)(6,98,19,83,133,59,39,119)(7,99,20,84,134,60,40,120)(8,100,21,85,135,61,41,121)(9,101,22,86,136,62,42,122)(10,102,23,87,137,63,43,123)(11,103,24,88,138,64,44,124)(12,104,25,89,139,65,45,125)(13,105,26,90,140,66,46,126)(14,106,27,73,141,67,47,109)(15,107,28,74,142,68,48,110)(16,108,29,75,143,69,49,111)(17,91,30,76,144,70,50,112)(18,92,31,77,127,71,51,113), (19,39)(20,40)(21,41)(22,42)(23,43)(24,44)(25,45)(26,46)(27,47)(28,48)(29,49)(30,50)(31,51)(32,52)(33,53)(34,54)(35,37)(36,38)(55,115)(56,116)(57,117)(58,118)(59,119)(60,120)(61,121)(62,122)(63,123)(64,124)(65,125)(66,126)(67,109)(68,110)(69,111)(70,112)(71,113)(72,114)(73,106)(74,107)(75,108)(76,91)(77,92)(78,93)(79,94)(80,95)(81,96)(82,97)(83,98)(84,99)(85,100)(86,101)(87,102)(88,103)(89,104)(90,105) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,93,32,78,128,72,52,114),(2,94,33,79,129,55,53,115),(3,95,34,80,130,56,54,116),(4,96,35,81,131,57,37,117),(5,97,36,82,132,58,38,118),(6,98,19,83,133,59,39,119),(7,99,20,84,134,60,40,120),(8,100,21,85,135,61,41,121),(9,101,22,86,136,62,42,122),(10,102,23,87,137,63,43,123),(11,103,24,88,138,64,44,124),(12,104,25,89,139,65,45,125),(13,105,26,90,140,66,46,126),(14,106,27,73,141,67,47,109),(15,107,28,74,142,68,48,110),(16,108,29,75,143,69,49,111),(17,91,30,76,144,70,50,112),(18,92,31,77,127,71,51,113)], [(19,39),(20,40),(21,41),(22,42),(23,43),(24,44),(25,45),(26,46),(27,47),(28,48),(29,49),(30,50),(31,51),(32,52),(33,53),(34,54),(35,37),(36,38),(55,115),(56,116),(57,117),(58,118),(59,119),(60,120),(61,121),(62,122),(63,123),(64,124),(65,125),(66,126),(67,109),(68,110),(69,111),(70,112),(71,113),(72,114),(73,106),(74,107),(75,108),(76,91),(77,92),(78,93),(79,94),(80,95),(81,96),(82,97),(83,98),(84,99),(85,100),(86,101),(87,102),(88,103),(89,104),(90,105)]])

126 conjugacy classes

class 1 2A2B2C2D2E3A3B4A4B4C4D6A···6F6G6H6I6J8A8B8C8D9A···9F12A12B12C12D12E12F12G12H18A···18R18S···18AD24A···24H36A···36L36M···36X72A···72X
order1222223344446···6666688889···9121212121212121218···1818···1824···2436···3636···3672···72
size1111441122441···1444422221···1222244441···14···42···22···24···42···2

126 irreducible representations

dim111111111111111222222222
type+++++++
imageC1C2C2C2C2C3C6C6C6C6C9C18C18C18C18D4D4SD16C3×D4C3×D4C3×SD16D4×C9D4×C9C9×SD16
kernelSD16×C18C2×C72C9×SD16D4×C18Q8×C18C6×SD16C2×C24C3×SD16C6×D4C6×Q8C2×SD16C2×C8SD16C2×D4C2×Q8C36C2×C18C18C12C2×C6C6C4C22C2
# reps11411228226624661142286624

Matrix representation of SD16×C18 in GL4(𝔽73) generated by

18000
01800
0020
0002
,
552000
21800
00676
006767
,
11800
07200
0010
00072
G:=sub<GL(4,GF(73))| [18,0,0,0,0,18,0,0,0,0,2,0,0,0,0,2],[55,2,0,0,20,18,0,0,0,0,67,67,0,0,6,67],[1,0,0,0,18,72,0,0,0,0,1,0,0,0,0,72] >;

SD16×C18 in GAP, Magma, Sage, TeX

{\rm SD}_{16}\times C_{18}
% in TeX

G:=Group("SD16xC18");
// GroupNames label

G:=SmallGroup(288,183);
// by ID

G=gap.SmallGroup(288,183);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-3,-2,1008,365,192,5884,2951,242]);
// Polycyclic

G:=Group<a,b,c|a^18=b^8=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^3>;
// generators/relations

׿
×
𝔽