Extensions 1→N→G→Q→1 with N=C3 and Q=C4⋊C4⋊S3

Direct product G=N×Q with N=C3 and Q=C4⋊C4⋊S3
dρLabelID
C3×C4⋊C4⋊S396C3xC4:C4:S3288,669

Semidirect products G=N:Q with N=C3 and Q=C4⋊C4⋊S3
extensionφ:Q→Aut NdρLabelID
C31(C4⋊C4⋊S3) = C62.38C23φ: C4⋊C4⋊S3/C4×Dic3C2 ⊆ Aut C348C3:1(C4:C4:S3)288,516
C32(C4⋊C4⋊S3) = C62.18C23φ: C4⋊C4⋊S3/C4⋊Dic3C2 ⊆ Aut C348C3:2(C4:C4:S3)288,496
C33(C4⋊C4⋊S3) = C62.28C23φ: C4⋊C4⋊S3/D6⋊C4C2 ⊆ Aut C396C3:3(C4:C4:S3)288,506
C34(C4⋊C4⋊S3) = C62.31C23φ: C4⋊C4⋊S3/D6⋊C4C2 ⊆ Aut C396C3:4(C4:C4:S3)288,509
C35(C4⋊C4⋊S3) = C62.32C23φ: C4⋊C4⋊S3/D6⋊C4C2 ⊆ Aut C396C3:5(C4:C4:S3)288,510
C36(C4⋊C4⋊S3) = C62.242C23φ: C4⋊C4⋊S3/C3×C4⋊C4C2 ⊆ Aut C3144C3:6(C4:C4:S3)288,755

Non-split extensions G=N.Q with N=C3 and Q=C4⋊C4⋊S3
extensionφ:Q→Aut NdρLabelID
C3.(C4⋊C4⋊S3) = C4⋊C4⋊D9φ: C4⋊C4⋊S3/C3×C4⋊C4C2 ⊆ Aut C3144C3.(C4:C4:S3)288,108

׿
×
𝔽