metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D6⋊C4, C6.6D4, C2.2D12, C22.6D6, (C2×C4)⋊1S3, (C2×C12)⋊1C2, C2.5(C4×S3), C6.4(C2×C4), C3⋊1(C22⋊C4), (C22×S3).C2, (C2×Dic3)⋊1C2, C2.2(C3⋊D4), (C2×C6).6C22, SmallGroup(48,14)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D6⋊C4
G = < a,b,c | a6=b2=c4=1, bab=a-1, ac=ca, cbc-1=a3b >
Character table of D6⋊C4
class | 1 | 2A | 2B | 2C | 2D | 2E | 3 | 4A | 4B | 4C | 4D | 6A | 6B | 6C | 12A | 12B | 12C | 12D | |
size | 1 | 1 | 1 | 1 | 6 | 6 | 2 | 2 | 2 | 6 | 6 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | i | -i | -i | i | 1 | -1 | -1 | -i | -i | i | i | linear of order 4 |
ρ6 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | i | -i | i | -i | 1 | -1 | -1 | -i | -i | i | i | linear of order 4 |
ρ7 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -i | i | -i | i | 1 | -1 | -1 | i | i | -i | -i | linear of order 4 |
ρ8 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -i | i | i | -i | 1 | -1 | -1 | i | i | -i | -i | linear of order 4 |
ρ9 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -2 | -2 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ11 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | -2 | -2 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | -√3 | √3 | √3 | -√3 | orthogonal lifted from D12 |
ρ14 | 2 | 2 | -2 | -2 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | √3 | -√3 | -√3 | √3 | orthogonal lifted from D12 |
ρ15 | 2 | -2 | -2 | 2 | 0 | 0 | -1 | -2i | 2i | 0 | 0 | -1 | 1 | 1 | -i | -i | i | i | complex lifted from C4×S3 |
ρ16 | 2 | -2 | -2 | 2 | 0 | 0 | -1 | 2i | -2i | 0 | 0 | -1 | 1 | 1 | i | i | -i | -i | complex lifted from C4×S3 |
ρ17 | 2 | -2 | 2 | -2 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | -√-3 | √-3 | -√-3 | √-3 | complex lifted from C3⋊D4 |
ρ18 | 2 | -2 | 2 | -2 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | √-3 | -√-3 | √-3 | -√-3 | complex lifted from C3⋊D4 |
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)
(1 12)(2 11)(3 10)(4 9)(5 8)(6 7)(13 21)(14 20)(15 19)(16 24)(17 23)(18 22)
(1 19 7 13)(2 20 8 14)(3 21 9 15)(4 22 10 16)(5 23 11 17)(6 24 12 18)
G:=sub<Sym(24)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,12)(2,11)(3,10)(4,9)(5,8)(6,7)(13,21)(14,20)(15,19)(16,24)(17,23)(18,22), (1,19,7,13)(2,20,8,14)(3,21,9,15)(4,22,10,16)(5,23,11,17)(6,24,12,18)>;
G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,12)(2,11)(3,10)(4,9)(5,8)(6,7)(13,21)(14,20)(15,19)(16,24)(17,23)(18,22), (1,19,7,13)(2,20,8,14)(3,21,9,15)(4,22,10,16)(5,23,11,17)(6,24,12,18) );
G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24)], [(1,12),(2,11),(3,10),(4,9),(5,8),(6,7),(13,21),(14,20),(15,19),(16,24),(17,23),(18,22)], [(1,19,7,13),(2,20,8,14),(3,21,9,15),(4,22,10,16),(5,23,11,17),(6,24,12,18)]])
G:=TransitiveGroup(24,33);
D6⋊C4 is a maximal subgroup of
C42⋊2S3 C4×D12 C42⋊7S3 C42⋊3S3 S3×C22⋊C4 Dic3⋊4D4 D6⋊D4 C23.9D6 Dic3⋊D4 C23.11D6 C23.21D6 C4⋊C4⋊7S3 Dic3⋊5D4 D6.D4 C12⋊D4 D6⋊Q8 C4.D12 C4⋊C4⋊S3 C4×C3⋊D4 C23.28D6 C12⋊7D4 C23⋊2D6 C23.14D6 D6⋊3Q8 C12.23D4 D18⋊C4 D6⋊Dic3 C6.D12 C6.11D12 GL2(𝔽3)⋊C4 Q8.2D12 C24.5D6 SL2(𝔽3)⋊D4 D6⋊Dic5 D30⋊4C4 D30⋊3C4 D6⋊F5 D6⋊Dic7 D42⋊C4 C2.D84 C32⋊D6⋊C4 D6⋊(C32⋊C4) C3⋊S3.2D12 (C3×C6).8D12
D6⋊C4 is a maximal quotient of
C42⋊4S3 C23.6D6 C6.D8 C6.SD16 C2.Dic12 D6⋊C8 C2.D24 C12.46D4 C12.47D4 D12⋊C4 C6.C42 D18⋊C4 D6⋊Dic3 C6.D12 C6.11D12 C24.5D6 D6⋊Dic5 D30⋊4C4 D30⋊3C4 D6⋊F5 D6⋊Dic7 D42⋊C4 C2.D84 D6⋊(C32⋊C4) C3⋊S3.2D12 (C3×C6).8D12
Matrix representation of D6⋊C4 ►in GL3(𝔽13) generated by
1 | 0 | 0 |
0 | 1 | 1 |
0 | 12 | 0 |
12 | 0 | 0 |
0 | 1 | 1 |
0 | 0 | 12 |
5 | 0 | 0 |
0 | 11 | 9 |
0 | 4 | 2 |
G:=sub<GL(3,GF(13))| [1,0,0,0,1,12,0,1,0],[12,0,0,0,1,0,0,1,12],[5,0,0,0,11,4,0,9,2] >;
D6⋊C4 in GAP, Magma, Sage, TeX
D_6\rtimes C_4
% in TeX
G:=Group("D6:C4");
// GroupNames label
G:=SmallGroup(48,14);
// by ID
G=gap.SmallGroup(48,14);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-3,101,26,804]);
// Polycyclic
G:=Group<a,b,c|a^6=b^2=c^4=1,b*a*b=a^-1,a*c=c*a,c*b*c^-1=a^3*b>;
// generators/relations
Export
Subgroup lattice of D6⋊C4 in TeX
Character table of D6⋊C4 in TeX