Extensions 1→N→G→Q→1 with N=D12.S3 and Q=C2

Direct product G=N×Q with N=D12.S3 and Q=C2
dρLabelID
C2×D12.S396C2xD12.S3288,476

Semidirect products G=N:Q with N=D12.S3 and Q=C2
extensionφ:Q→Out NdρLabelID
D12.S31C2 = D24⋊S3φ: C2/C1C2 ⊆ Out D12.S3484D12.S3:1C2288,443
D12.S32C2 = C24.3D6φ: C2/C1C2 ⊆ Out D12.S3964-D12.S3:2C2288,448
D12.S33C2 = D12.28D6φ: C2/C1C2 ⊆ Out D12.S3484D12.S3:3C2288,478
D12.S34C2 = D12.29D6φ: C2/C1C2 ⊆ Out D12.S3484-D12.S3:4C2288,479
D12.S35C2 = S3×C24⋊C2φ: C2/C1C2 ⊆ Out D12.S3484D12.S3:5C2288,440
D12.S36C2 = D247S3φ: C2/C1C2 ⊆ Out D12.S3964-D12.S3:6C2288,455
D12.S37C2 = D12.D6φ: C2/C1C2 ⊆ Out D12.S3488-D12.S3:7C2288,575
D12.S38C2 = D129D6φ: C2/C1C2 ⊆ Out D12.S3488-D12.S3:8C2288,580
D12.S39C2 = D12.11D6φ: C2/C1C2 ⊆ Out D12.S3968-D12.S3:9C2288,591
D12.S310C2 = D12.15D6φ: C2/C1C2 ⊆ Out D12.S3488-D12.S3:10C2288,599
D12.S311C2 = S3×D4.S3φ: C2/C1C2 ⊆ Out D12.S3488-D12.S3:11C2288,576
D12.S312C2 = D12.8D6φ: C2/C1C2 ⊆ Out D12.S3488-D12.S3:12C2288,584
D12.S313C2 = D12.9D6φ: C2/C1C2 ⊆ Out D12.S3488-D12.S3:13C2288,588
D12.S314C2 = D12.12D6φ: C2/C1C2 ⊆ Out D12.S3968-D12.S3:14C2288,595
D12.S315C2 = D12.27D6φ: trivial image484D12.S3:15C2288,477


׿
×
𝔽