metabelian, supersoluble, monomial
Aliases: D12.27D6, C12.83D12, C62.48D4, Dic6.27D6, C3⋊C8.27D6, C4○D12⋊1S3, C3⋊5(C4○D24), C6.68(C2×D12), (C2×C6).13D12, C32⋊9(C4○D8), C3⋊D24⋊15C2, (C2×C12).118D6, (C3×C12).117D4, C12.59D6⋊2C2, C3⋊1(Q8.13D6), C12.82(C3⋊D4), (C3×C12).65C23, (C6×C12).78C22, C32⋊3Q16⋊15C2, C32⋊5SD16⋊15C2, D12.S3⋊15C2, C4.32(C3⋊D12), C12.125(C22×S3), (C3×D12).35C22, C12⋊S3.26C22, C22.1(C3⋊D12), (C3×Dic6).34C22, C32⋊4Q8.26C22, (C2×C3⋊C8)⋊7S3, (C6×C3⋊C8)⋊10C2, C4.53(C2×S32), (C2×C4).66S32, C6.4(C2×C3⋊D4), (C3×C4○D12)⋊4C2, (C3×C6).69(C2×D4), C2.8(C2×C3⋊D12), (C3×C3⋊C8).30C22, (C2×C6).38(C3⋊D4), SmallGroup(288,477)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D12.27D6
G = < a,b,c,d | a12=b2=1, c6=a6, d2=a3, bab=a-1, ac=ca, ad=da, bc=cb, dbd-1=a3b, dcd-1=c5 >
Subgroups: 602 in 144 conjugacy classes, 44 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2×C4, C2×C4, D4, Q8, C32, Dic3, C12, C12, D6, C2×C6, C2×C6, C2×C8, D8, SD16, Q16, C4○D4, C3×S3, C3⋊S3, C3×C6, C3×C6, C3⋊C8, C24, Dic6, Dic6, C4×S3, D12, D12, C3⋊D4, C2×C12, C2×C12, C3×D4, C3×Q8, C4○D8, C3×Dic3, C3⋊Dic3, C3×C12, S3×C6, C2×C3⋊S3, C62, C24⋊C2, D24, Dic12, C2×C3⋊C8, D4⋊S3, D4.S3, Q8⋊2S3, C3⋊Q16, C2×C24, C4○D12, C4○D12, C3×C4○D4, C3×C3⋊C8, C3×Dic6, S3×C12, C3×D12, C3×C3⋊D4, C32⋊4Q8, C4×C3⋊S3, C12⋊S3, C32⋊7D4, C6×C12, C4○D24, Q8.13D6, C3⋊D24, D12.S3, C32⋊5SD16, C32⋊3Q16, C6×C3⋊C8, C3×C4○D12, C12.59D6, D12.27D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, D12, C3⋊D4, C22×S3, C4○D8, S32, C2×D12, C2×C3⋊D4, C3⋊D12, C2×S32, C4○D24, Q8.13D6, C2×C3⋊D12, D12.27D6
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 42)(2 41)(3 40)(4 39)(5 38)(6 37)(7 48)(8 47)(9 46)(10 45)(11 44)(12 43)(13 30)(14 29)(15 28)(16 27)(17 26)(18 25)(19 36)(20 35)(21 34)(22 33)(23 32)(24 31)
(1 17 3 19 5 21 7 23 9 13 11 15)(2 18 4 20 6 22 8 24 10 14 12 16)(25 39 35 37 33 47 31 45 29 43 27 41)(26 40 36 38 34 48 32 46 30 44 28 42)
(1 38 4 41 7 44 10 47)(2 39 5 42 8 45 11 48)(3 40 6 43 9 46 12 37)(13 26 16 29 19 32 22 35)(14 27 17 30 20 33 23 36)(15 28 18 31 21 34 24 25)
G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,42)(2,41)(3,40)(4,39)(5,38)(6,37)(7,48)(8,47)(9,46)(10,45)(11,44)(12,43)(13,30)(14,29)(15,28)(16,27)(17,26)(18,25)(19,36)(20,35)(21,34)(22,33)(23,32)(24,31), (1,17,3,19,5,21,7,23,9,13,11,15)(2,18,4,20,6,22,8,24,10,14,12,16)(25,39,35,37,33,47,31,45,29,43,27,41)(26,40,36,38,34,48,32,46,30,44,28,42), (1,38,4,41,7,44,10,47)(2,39,5,42,8,45,11,48)(3,40,6,43,9,46,12,37)(13,26,16,29,19,32,22,35)(14,27,17,30,20,33,23,36)(15,28,18,31,21,34,24,25)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,42)(2,41)(3,40)(4,39)(5,38)(6,37)(7,48)(8,47)(9,46)(10,45)(11,44)(12,43)(13,30)(14,29)(15,28)(16,27)(17,26)(18,25)(19,36)(20,35)(21,34)(22,33)(23,32)(24,31), (1,17,3,19,5,21,7,23,9,13,11,15)(2,18,4,20,6,22,8,24,10,14,12,16)(25,39,35,37,33,47,31,45,29,43,27,41)(26,40,36,38,34,48,32,46,30,44,28,42), (1,38,4,41,7,44,10,47)(2,39,5,42,8,45,11,48)(3,40,6,43,9,46,12,37)(13,26,16,29,19,32,22,35)(14,27,17,30,20,33,23,36)(15,28,18,31,21,34,24,25) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,42),(2,41),(3,40),(4,39),(5,38),(6,37),(7,48),(8,47),(9,46),(10,45),(11,44),(12,43),(13,30),(14,29),(15,28),(16,27),(17,26),(18,25),(19,36),(20,35),(21,34),(22,33),(23,32),(24,31)], [(1,17,3,19,5,21,7,23,9,13,11,15),(2,18,4,20,6,22,8,24,10,14,12,16),(25,39,35,37,33,47,31,45,29,43,27,41),(26,40,36,38,34,48,32,46,30,44,28,42)], [(1,38,4,41,7,44,10,47),(2,39,5,42,8,45,11,48),(3,40,6,43,9,46,12,37),(13,26,16,29,19,32,22,35),(14,27,17,30,20,33,23,36),(15,28,18,31,21,34,24,25)]])
48 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 3A | 3B | 3C | 4A | 4B | 4C | 4D | 4E | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 6J | 8A | 8B | 8C | 8D | 12A | ··· | 12F | 12G | ··· | 12K | 12L | 12M | 24A | ··· | 24H |
order | 1 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 12 | ··· | 12 | 12 | ··· | 12 | 12 | 12 | 24 | ··· | 24 |
size | 1 | 1 | 2 | 12 | 36 | 2 | 2 | 4 | 1 | 1 | 2 | 12 | 36 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 12 | 12 | 6 | 6 | 6 | 6 | 2 | ··· | 2 | 4 | ··· | 4 | 12 | 12 | 6 | ··· | 6 |
48 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | S3 | S3 | D4 | D4 | D6 | D6 | D6 | D6 | D12 | C3⋊D4 | D12 | C3⋊D4 | C4○D8 | C4○D24 | S32 | C3⋊D12 | C2×S32 | C3⋊D12 | Q8.13D6 | D12.27D6 |
kernel | D12.27D6 | C3⋊D24 | D12.S3 | C32⋊5SD16 | C32⋊3Q16 | C6×C3⋊C8 | C3×C4○D12 | C12.59D6 | C2×C3⋊C8 | C4○D12 | C3×C12 | C62 | C3⋊C8 | Dic6 | D12 | C2×C12 | C12 | C12 | C2×C6 | C2×C6 | C32 | C3 | C2×C4 | C4 | C4 | C22 | C3 | C1 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 8 | 1 | 1 | 1 | 1 | 2 | 4 |
Matrix representation of D12.27D6 ►in GL6(𝔽73)
0 | 1 | 0 | 0 | 0 | 0 |
72 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 1 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
16 | 16 | 0 | 0 | 0 | 0 |
16 | 57 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
27 | 0 | 0 | 0 | 0 | 0 |
0 | 27 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 72 | 72 |
16 | 57 | 0 | 0 | 0 | 0 |
16 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(6,GF(73))| [0,72,0,0,0,0,1,0,0,0,0,0,0,0,72,72,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[16,16,0,0,0,0,16,57,0,0,0,0,0,0,1,1,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[27,0,0,0,0,0,0,27,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,72,0,0,0,0,1,72],[16,16,0,0,0,0,57,16,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;
D12.27D6 in GAP, Magma, Sage, TeX
D_{12}._{27}D_6
% in TeX
G:=Group("D12.27D6");
// GroupNames label
G:=SmallGroup(288,477);
// by ID
G=gap.SmallGroup(288,477);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,141,64,100,675,80,1356,9414]);
// Polycyclic
G:=Group<a,b,c,d|a^12=b^2=1,c^6=a^6,d^2=a^3,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=a^3*b,d*c*d^-1=c^5>;
// generators/relations