Copied to
clipboard

G = D12.9D6order 288 = 25·32

9th non-split extension by D12 of D6 acting via D6/C3=C22

metabelian, supersoluble, monomial

Aliases: D12.9D6, Q8:4S32, C3:C8:17D6, (C3xQ8):5D6, C3:S3:5SD16, C3:4(S3xSD16), C6.61(S3xD4), Q8:2S3:2S3, D6:D6.4C2, C3:Dic3.22D4, C32:12(C2xSD16), C12.29D6:5C2, C12.17(C22xS3), (C3xC12).17C23, D12.S3:13C2, C2.21(Dic3:D6), (Q8xC32):3C22, C32:4Q8:6C22, (C3xD12).17C22, C4.17(C2xS32), (Q8xC3:S3):1C2, (C3xC3:C8):17C22, (C2xC3:S3).59D4, (C3xQ8:2S3):6C2, (C3xC6).132(C2xD4), (C4xC3:S3).17C22, SmallGroup(288,588)

Series: Derived Chief Lower central Upper central

C1C3xC12 — D12.9D6
C1C3C32C3xC6C3xC12C3xD12D6:D6 — D12.9D6
C32C3xC6C3xC12 — D12.9D6
C1C2C4Q8

Generators and relations for D12.9D6
 G = < a,b,c,d | a12=b2=1, c6=a6, d2=a9, bab=a-1, cac-1=a7, ad=da, cbc-1=dbd-1=a3b, dcd-1=a3c5 >

Subgroups: 738 in 155 conjugacy classes, 40 normal (16 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C8, C2xC4, D4, Q8, Q8, C23, C32, Dic3, C12, C12, D6, C2xC6, C2xC8, SD16, C2xD4, C2xQ8, C3xS3, C3:S3, C3xC6, C3:C8, C24, Dic6, C4xS3, D12, C3:D4, C3xD4, C3xQ8, C3xQ8, C22xS3, C2xSD16, C3:Dic3, C3:Dic3, C3xC12, C3xC12, S32, S3xC6, C2xC3:S3, S3xC8, C24:C2, D4.S3, Q8:2S3, C3xSD16, S3xD4, S3xQ8, C3xC3:C8, D6:S3, C3xD12, C32:4Q8, C32:4Q8, C4xC3:S3, C4xC3:S3, Q8xC32, C2xS32, S3xSD16, C12.29D6, D12.S3, C3xQ8:2S3, D6:D6, Q8xC3:S3, D12.9D6
Quotients: C1, C2, C22, S3, D4, C23, D6, SD16, C2xD4, C22xS3, C2xSD16, S32, S3xD4, C2xS32, S3xSD16, Dic3:D6, D12.9D6

Smallest permutation representation of D12.9D6
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 30)(2 29)(3 28)(4 27)(5 26)(6 25)(7 36)(8 35)(9 34)(10 33)(11 32)(12 31)(13 42)(14 41)(15 40)(16 39)(17 38)(18 37)(19 48)(20 47)(21 46)(22 45)(23 44)(24 43)
(1 21 11 19 9 17 7 15 5 13 3 23)(2 16 12 14 10 24 8 22 6 20 4 18)(25 44 27 46 29 48 31 38 33 40 35 42)(26 39 28 41 30 43 32 45 34 47 36 37)
(1 42 10 39 7 48 4 45)(2 43 11 40 8 37 5 46)(3 44 12 41 9 38 6 47)(13 36 22 33 19 30 16 27)(14 25 23 34 20 31 17 28)(15 26 24 35 21 32 18 29)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,30)(2,29)(3,28)(4,27)(5,26)(6,25)(7,36)(8,35)(9,34)(10,33)(11,32)(12,31)(13,42)(14,41)(15,40)(16,39)(17,38)(18,37)(19,48)(20,47)(21,46)(22,45)(23,44)(24,43), (1,21,11,19,9,17,7,15,5,13,3,23)(2,16,12,14,10,24,8,22,6,20,4,18)(25,44,27,46,29,48,31,38,33,40,35,42)(26,39,28,41,30,43,32,45,34,47,36,37), (1,42,10,39,7,48,4,45)(2,43,11,40,8,37,5,46)(3,44,12,41,9,38,6,47)(13,36,22,33,19,30,16,27)(14,25,23,34,20,31,17,28)(15,26,24,35,21,32,18,29)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,30)(2,29)(3,28)(4,27)(5,26)(6,25)(7,36)(8,35)(9,34)(10,33)(11,32)(12,31)(13,42)(14,41)(15,40)(16,39)(17,38)(18,37)(19,48)(20,47)(21,46)(22,45)(23,44)(24,43), (1,21,11,19,9,17,7,15,5,13,3,23)(2,16,12,14,10,24,8,22,6,20,4,18)(25,44,27,46,29,48,31,38,33,40,35,42)(26,39,28,41,30,43,32,45,34,47,36,37), (1,42,10,39,7,48,4,45)(2,43,11,40,8,37,5,46)(3,44,12,41,9,38,6,47)(13,36,22,33,19,30,16,27)(14,25,23,34,20,31,17,28)(15,26,24,35,21,32,18,29) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,30),(2,29),(3,28),(4,27),(5,26),(6,25),(7,36),(8,35),(9,34),(10,33),(11,32),(12,31),(13,42),(14,41),(15,40),(16,39),(17,38),(18,37),(19,48),(20,47),(21,46),(22,45),(23,44),(24,43)], [(1,21,11,19,9,17,7,15,5,13,3,23),(2,16,12,14,10,24,8,22,6,20,4,18),(25,44,27,46,29,48,31,38,33,40,35,42),(26,39,28,41,30,43,32,45,34,47,36,37)], [(1,42,10,39,7,48,4,45),(2,43,11,40,8,37,5,46),(3,44,12,41,9,38,6,47),(13,36,22,33,19,30,16,27),(14,25,23,34,20,31,17,28),(15,26,24,35,21,32,18,29)]])

33 conjugacy classes

class 1 2A2B2C2D2E3A3B3C4A4B4C4D6A6B6C6D6E8A8B8C8D12A12B12C···12G24A24B24C24D
order1222223334444666668888121212···1224242424
size1199121222424183622424246666448···812121212

33 irreducible representations

dim1111112222222444448
type++++++++++++++++-
imageC1C2C2C2C2C2S3D4D4D6D6D6SD16S32S3xD4C2xS32S3xSD16Dic3:D6D12.9D6
kernelD12.9D6C12.29D6D12.S3C3xQ8:2S3D6:D6Q8xC3:S3Q8:2S3C3:Dic3C2xC3:S3C3:C8D12C3xQ8C3:S3Q8C6C4C3C2C1
# reps1122112112224121421

Matrix representation of D12.9D6 in GL6(F73)

7210000
7200000
0072300
0048100
000010
000001
,
7200000
7210000
00626800
00241100
000010
000001
,
100000
010000
0062100
00336700
0000721
0000720
,
100000
010000
00125500
004000
0000720
0000721

G:=sub<GL(6,GF(73))| [72,72,0,0,0,0,1,0,0,0,0,0,0,0,72,48,0,0,0,0,3,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[72,72,0,0,0,0,0,1,0,0,0,0,0,0,62,24,0,0,0,0,68,11,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,6,33,0,0,0,0,21,67,0,0,0,0,0,0,72,72,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,4,0,0,0,0,55,0,0,0,0,0,0,0,72,72,0,0,0,0,0,1] >;

D12.9D6 in GAP, Magma, Sage, TeX

D_{12}._9D_6
% in TeX

G:=Group("D12.9D6");
// GroupNames label

G:=SmallGroup(288,588);
// by ID

G=gap.SmallGroup(288,588);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,254,135,100,675,346,185,80,1356,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^12=b^2=1,c^6=a^6,d^2=a^9,b*a*b=a^-1,c*a*c^-1=a^7,a*d=d*a,c*b*c^-1=d*b*d^-1=a^3*b,d*c*d^-1=a^3*c^5>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<