Copied to
clipboard

G = D12.29D6order 288 = 25·32

4th non-split extension by D12 of D6 acting via D6/C6=C2

metabelian, supersoluble, monomial

Aliases: D12.29D6, C12.75D12, C62.50D4, Dic6.28D6, C3:C8.3D6, C4oD12.5S3, C6.70(C2xD12), (C3xC12).68D4, (C2xC6).14D12, C4.Dic3:9S3, (C2xC12).120D6, C3:5(C8.D6), C32:3Q16:5C2, D12.S3:4C2, C3:1(Q8.14D6), C12.48(C3:D4), (C6xC12).80C22, (C3xC12).67C23, C12.84(C22xS3), C32:7(C8.C22), C4.17(C3:D12), (C3xD12).37C22, (C3xDic6).35C22, C22.10(C3:D12), C32:4Q8.27C22, (C2xC4).9S32, C4.55(C2xS32), C6.6(C2xC3:D4), (C3xC6).71(C2xD4), (C3xC3:C8).3C22, (C3xC4oD12).8C2, (C3xC4.Dic3):3C2, C2.10(C2xC3:D12), (C2xC6).20(C3:D4), (C2xC32:4Q8):10C2, SmallGroup(288,479)

Series: Derived Chief Lower central Upper central

C1C3xC12 — D12.29D6
C1C3C32C3xC6C3xC12C3xD12D12.S3 — D12.29D6
C32C3xC6C3xC12 — D12.29D6
C1C2C2xC4

Generators and relations for D12.29D6
 G = < a,b,c,d | a12=b2=1, c6=a6, d2=a9, bab=a-1, ac=ca, ad=da, bc=cb, dbd-1=a3b, dcd-1=a6c5 >

Subgroups: 514 in 139 conjugacy classes, 44 normal (34 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2xC4, C2xC4, D4, Q8, C32, Dic3, C12, C12, D6, C2xC6, C2xC6, M4(2), SD16, Q16, C2xQ8, C4oD4, C3xS3, C3xC6, C3xC6, C3:C8, C24, Dic6, Dic6, C4xS3, D12, C2xDic3, C3:D4, C2xC12, C2xC12, C3xD4, C3xQ8, C8.C22, C3xDic3, C3:Dic3, C3xC12, S3xC6, C62, C24:C2, Dic12, C4.Dic3, D4.S3, C3:Q16, C3xM4(2), C2xDic6, C4oD12, C3xC4oD4, C3xC3:C8, C3xDic6, S3xC12, C3xD12, C3xC3:D4, C32:4Q8, C32:4Q8, C2xC3:Dic3, C6xC12, C8.D6, Q8.14D6, D12.S3, C32:3Q16, C3xC4.Dic3, C3xC4oD12, C2xC32:4Q8, D12.29D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, D12, C3:D4, C22xS3, C8.C22, S32, C2xD12, C2xC3:D4, C3:D12, C2xS32, C8.D6, Q8.14D6, C2xC3:D12, D12.29D6

Smallest permutation representation of D12.29D6
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 34)(2 33)(3 32)(4 31)(5 30)(6 29)(7 28)(8 27)(9 26)(10 25)(11 36)(12 35)(13 44)(14 43)(15 42)(16 41)(17 40)(18 39)(19 38)(20 37)(21 48)(22 47)(23 46)(24 45)
(1 8 3 10 5 12 7 2 9 4 11 6)(13 18 23 16 21 14 19 24 17 22 15 20)(25 30 35 28 33 26 31 36 29 34 27 32)(37 44 39 46 41 48 43 38 45 40 47 42)
(1 20 10 17 7 14 4 23)(2 21 11 18 8 15 5 24)(3 22 12 19 9 16 6 13)(25 43 34 40 31 37 28 46)(26 44 35 41 32 38 29 47)(27 45 36 42 33 39 30 48)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,34)(2,33)(3,32)(4,31)(5,30)(6,29)(7,28)(8,27)(9,26)(10,25)(11,36)(12,35)(13,44)(14,43)(15,42)(16,41)(17,40)(18,39)(19,38)(20,37)(21,48)(22,47)(23,46)(24,45), (1,8,3,10,5,12,7,2,9,4,11,6)(13,18,23,16,21,14,19,24,17,22,15,20)(25,30,35,28,33,26,31,36,29,34,27,32)(37,44,39,46,41,48,43,38,45,40,47,42), (1,20,10,17,7,14,4,23)(2,21,11,18,8,15,5,24)(3,22,12,19,9,16,6,13)(25,43,34,40,31,37,28,46)(26,44,35,41,32,38,29,47)(27,45,36,42,33,39,30,48)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,34)(2,33)(3,32)(4,31)(5,30)(6,29)(7,28)(8,27)(9,26)(10,25)(11,36)(12,35)(13,44)(14,43)(15,42)(16,41)(17,40)(18,39)(19,38)(20,37)(21,48)(22,47)(23,46)(24,45), (1,8,3,10,5,12,7,2,9,4,11,6)(13,18,23,16,21,14,19,24,17,22,15,20)(25,30,35,28,33,26,31,36,29,34,27,32)(37,44,39,46,41,48,43,38,45,40,47,42), (1,20,10,17,7,14,4,23)(2,21,11,18,8,15,5,24)(3,22,12,19,9,16,6,13)(25,43,34,40,31,37,28,46)(26,44,35,41,32,38,29,47)(27,45,36,42,33,39,30,48) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,34),(2,33),(3,32),(4,31),(5,30),(6,29),(7,28),(8,27),(9,26),(10,25),(11,36),(12,35),(13,44),(14,43),(15,42),(16,41),(17,40),(18,39),(19,38),(20,37),(21,48),(22,47),(23,46),(24,45)], [(1,8,3,10,5,12,7,2,9,4,11,6),(13,18,23,16,21,14,19,24,17,22,15,20),(25,30,35,28,33,26,31,36,29,34,27,32),(37,44,39,46,41,48,43,38,45,40,47,42)], [(1,20,10,17,7,14,4,23),(2,21,11,18,8,15,5,24),(3,22,12,19,9,16,6,13),(25,43,34,40,31,37,28,46),(26,44,35,41,32,38,29,47),(27,45,36,42,33,39,30,48)]])

39 conjugacy classes

class 1 2A2B2C3A3B3C4A4B4C4D4E6A6B6C···6G6H6I8A8B12A12B12C12D12E···12J12K12L24A24B24C24D
order122233344444666···666881212121212···12121224242424
size1121222422123636224···41212121222224···4121212121212

39 irreducible representations

dim11111122222222222244444444
type++++++++++++++++-++++---
imageC1C2C2C2C2C2S3S3D4D4D6D6D6D6D12C3:D4D12C3:D4C8.C22S32C3:D12C2xS32C3:D12C8.D6Q8.14D6D12.29D6
kernelD12.29D6D12.S3C32:3Q16C3xC4.Dic3C3xC4oD12C2xC32:4Q8C4.Dic3C4oD12C3xC12C62C3:C8Dic6D12C2xC12C12C12C2xC6C2xC6C32C2xC4C4C4C22C3C3C1
# reps12211111112112222211111224

Matrix representation of D12.29D6 in GL4(F73) generated by

146600
7700
70766
066714
,
22223941
1010412
60705163
70485163
,
59700
666600
075966
660766
,
77520
14145252
56555966
56565966
G:=sub<GL(4,GF(73))| [14,7,7,0,66,7,0,66,0,0,7,7,0,0,66,14],[22,10,60,70,22,10,70,48,39,41,51,51,41,2,63,63],[59,66,0,66,7,66,7,0,0,0,59,7,0,0,66,66],[7,14,56,56,7,14,55,56,52,52,59,59,0,52,66,66] >;

D12.29D6 in GAP, Magma, Sage, TeX

D_{12}._{29}D_6
% in TeX

G:=Group("D12.29D6");
// GroupNames label

G:=SmallGroup(288,479);
// by ID

G=gap.SmallGroup(288,479);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,141,64,219,100,675,80,1356,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^12=b^2=1,c^6=a^6,d^2=a^9,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=a^3*b,d*c*d^-1=a^6*c^5>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<