Copied to
clipboard

G = D247S3order 288 = 25·32

The semidirect product of D24 and S3 acting through Inn(D24)

metabelian, supersoluble, monomial

Aliases: D247S3, D6.2D12, C24.24D6, D12.20D6, Dic3.13D12, C8.9S32, (S3×C8)⋊2S3, C3⋊C8.25D6, C6.9(S3×D4), (S3×C24)⋊1C2, C6.9(C2×D12), (C3×D24)⋊10C2, C32(C4○D24), (S3×C6).21D4, (C4×S3).37D6, C2.14(S3×D12), C324(C4○D8), D125S33C2, C31(D83S3), C325Q167C2, D12.S36C2, (C3×C12).52C23, (C3×C24).23C22, C12.72(C22×S3), (C3×Dic3).26D4, (C3×D12).6C22, (S3×C12).45C22, C324Q8.5C22, C4.48(C2×S32), (C3×C6).36(C2×D4), (C3×C3⋊C8).32C22, SmallGroup(288,455)

Series: Derived Chief Lower central Upper central

C1C3×C12 — D247S3
C1C3C32C3×C6C3×C12S3×C12D125S3 — D247S3
C32C3×C6C3×C12 — D247S3
C1C2C4C8

Generators and relations for D247S3
 G = < a,b,c,d | a24=b2=c3=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, dbd=a12b, dcd=c-1 >

Subgroups: 562 in 133 conjugacy classes, 40 normal (30 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C8, C8, C2×C4, D4, Q8, C32, Dic3, Dic3, C12, C12, D6, D6, C2×C6, C2×C8, D8, SD16, Q16, C4○D4, C3×S3, C3×C6, C3⋊C8, C24, C24, Dic6, C4×S3, C4×S3, D12, C2×Dic3, C3⋊D4, C2×C12, C3×D4, C4○D8, C3×Dic3, C3⋊Dic3, C3×C12, S3×C6, S3×C6, S3×C8, C24⋊C2, D24, Dic12, D4.S3, C2×C24, C3×D8, C4○D12, D42S3, C3×C3⋊C8, C3×C24, S3×Dic3, D6⋊S3, S3×C12, C3×D12, C324Q8, C4○D24, D83S3, D12.S3, S3×C24, C3×D24, C325Q16, D125S3, D247S3
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, D12, C22×S3, C4○D8, S32, C2×D12, S3×D4, C2×S32, C4○D24, D83S3, S3×D12, D247S3

Smallest permutation representation of D247S3
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
(1 48)(2 47)(3 46)(4 45)(5 44)(6 43)(7 42)(8 41)(9 40)(10 39)(11 38)(12 37)(13 36)(14 35)(15 34)(16 33)(17 32)(18 31)(19 30)(20 29)(21 28)(22 27)(23 26)(24 25)(49 93)(50 92)(51 91)(52 90)(53 89)(54 88)(55 87)(56 86)(57 85)(58 84)(59 83)(60 82)(61 81)(62 80)(63 79)(64 78)(65 77)(66 76)(67 75)(68 74)(69 73)(70 96)(71 95)(72 94)
(1 17 9)(2 18 10)(3 19 11)(4 20 12)(5 21 13)(6 22 14)(7 23 15)(8 24 16)(25 33 41)(26 34 42)(27 35 43)(28 36 44)(29 37 45)(30 38 46)(31 39 47)(32 40 48)(49 57 65)(50 58 66)(51 59 67)(52 60 68)(53 61 69)(54 62 70)(55 63 71)(56 64 72)(73 89 81)(74 90 82)(75 91 83)(76 92 84)(77 93 85)(78 94 86)(79 95 87)(80 96 88)
(1 58)(2 59)(3 60)(4 61)(5 62)(6 63)(7 64)(8 65)(9 66)(10 67)(11 68)(12 69)(13 70)(14 71)(15 72)(16 49)(17 50)(18 51)(19 52)(20 53)(21 54)(22 55)(23 56)(24 57)(25 73)(26 74)(27 75)(28 76)(29 77)(30 78)(31 79)(32 80)(33 81)(34 82)(35 83)(36 84)(37 85)(38 86)(39 87)(40 88)(41 89)(42 90)(43 91)(44 92)(45 93)(46 94)(47 95)(48 96)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,48)(2,47)(3,46)(4,45)(5,44)(6,43)(7,42)(8,41)(9,40)(10,39)(11,38)(12,37)(13,36)(14,35)(15,34)(16,33)(17,32)(18,31)(19,30)(20,29)(21,28)(22,27)(23,26)(24,25)(49,93)(50,92)(51,91)(52,90)(53,89)(54,88)(55,87)(56,86)(57,85)(58,84)(59,83)(60,82)(61,81)(62,80)(63,79)(64,78)(65,77)(66,76)(67,75)(68,74)(69,73)(70,96)(71,95)(72,94), (1,17,9)(2,18,10)(3,19,11)(4,20,12)(5,21,13)(6,22,14)(7,23,15)(8,24,16)(25,33,41)(26,34,42)(27,35,43)(28,36,44)(29,37,45)(30,38,46)(31,39,47)(32,40,48)(49,57,65)(50,58,66)(51,59,67)(52,60,68)(53,61,69)(54,62,70)(55,63,71)(56,64,72)(73,89,81)(74,90,82)(75,91,83)(76,92,84)(77,93,85)(78,94,86)(79,95,87)(80,96,88), (1,58)(2,59)(3,60)(4,61)(5,62)(6,63)(7,64)(8,65)(9,66)(10,67)(11,68)(12,69)(13,70)(14,71)(15,72)(16,49)(17,50)(18,51)(19,52)(20,53)(21,54)(22,55)(23,56)(24,57)(25,73)(26,74)(27,75)(28,76)(29,77)(30,78)(31,79)(32,80)(33,81)(34,82)(35,83)(36,84)(37,85)(38,86)(39,87)(40,88)(41,89)(42,90)(43,91)(44,92)(45,93)(46,94)(47,95)(48,96)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,48)(2,47)(3,46)(4,45)(5,44)(6,43)(7,42)(8,41)(9,40)(10,39)(11,38)(12,37)(13,36)(14,35)(15,34)(16,33)(17,32)(18,31)(19,30)(20,29)(21,28)(22,27)(23,26)(24,25)(49,93)(50,92)(51,91)(52,90)(53,89)(54,88)(55,87)(56,86)(57,85)(58,84)(59,83)(60,82)(61,81)(62,80)(63,79)(64,78)(65,77)(66,76)(67,75)(68,74)(69,73)(70,96)(71,95)(72,94), (1,17,9)(2,18,10)(3,19,11)(4,20,12)(5,21,13)(6,22,14)(7,23,15)(8,24,16)(25,33,41)(26,34,42)(27,35,43)(28,36,44)(29,37,45)(30,38,46)(31,39,47)(32,40,48)(49,57,65)(50,58,66)(51,59,67)(52,60,68)(53,61,69)(54,62,70)(55,63,71)(56,64,72)(73,89,81)(74,90,82)(75,91,83)(76,92,84)(77,93,85)(78,94,86)(79,95,87)(80,96,88), (1,58)(2,59)(3,60)(4,61)(5,62)(6,63)(7,64)(8,65)(9,66)(10,67)(11,68)(12,69)(13,70)(14,71)(15,72)(16,49)(17,50)(18,51)(19,52)(20,53)(21,54)(22,55)(23,56)(24,57)(25,73)(26,74)(27,75)(28,76)(29,77)(30,78)(31,79)(32,80)(33,81)(34,82)(35,83)(36,84)(37,85)(38,86)(39,87)(40,88)(41,89)(42,90)(43,91)(44,92)(45,93)(46,94)(47,95)(48,96) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)], [(1,48),(2,47),(3,46),(4,45),(5,44),(6,43),(7,42),(8,41),(9,40),(10,39),(11,38),(12,37),(13,36),(14,35),(15,34),(16,33),(17,32),(18,31),(19,30),(20,29),(21,28),(22,27),(23,26),(24,25),(49,93),(50,92),(51,91),(52,90),(53,89),(54,88),(55,87),(56,86),(57,85),(58,84),(59,83),(60,82),(61,81),(62,80),(63,79),(64,78),(65,77),(66,76),(67,75),(68,74),(69,73),(70,96),(71,95),(72,94)], [(1,17,9),(2,18,10),(3,19,11),(4,20,12),(5,21,13),(6,22,14),(7,23,15),(8,24,16),(25,33,41),(26,34,42),(27,35,43),(28,36,44),(29,37,45),(30,38,46),(31,39,47),(32,40,48),(49,57,65),(50,58,66),(51,59,67),(52,60,68),(53,61,69),(54,62,70),(55,63,71),(56,64,72),(73,89,81),(74,90,82),(75,91,83),(76,92,84),(77,93,85),(78,94,86),(79,95,87),(80,96,88)], [(1,58),(2,59),(3,60),(4,61),(5,62),(6,63),(7,64),(8,65),(9,66),(10,67),(11,68),(12,69),(13,70),(14,71),(15,72),(16,49),(17,50),(18,51),(19,52),(20,53),(21,54),(22,55),(23,56),(24,57),(25,73),(26,74),(27,75),(28,76),(29,77),(30,78),(31,79),(32,80),(33,81),(34,82),(35,83),(36,84),(37,85),(38,86),(39,87),(40,88),(41,89),(42,90),(43,91),(44,92),(45,93),(46,94),(47,95),(48,96)]])

45 conjugacy classes

class 1 2A2B2C2D3A3B3C4A4B4C4D4E6A6B6C6D6E6F6G8A8B8C8D12A12B12C12D12E12F12G24A24B24C24D24E···24J24K24L24M24N
order122223334444466666668888121212121212122424242424···2424242424
size116121222423336362246624242266224446622224···46666

45 irreducible representations

dim111111222222222222444444
type+++++++++++++++++++-+-
imageC1C2C2C2C2C2S3S3D4D4D6D6D6D6D12D12C4○D8C4○D24S32S3×D4C2×S32D83S3S3×D12D247S3
kernelD247S3D12.S3S3×C24C3×D24C325Q16D125S3S3×C8D24C3×Dic3S3×C6C3⋊C8C24C4×S3D12Dic3D6C32C3C8C6C4C3C2C1
# reps121112111112122248111224

Matrix representation of D247S3 in GL4(𝔽73) generated by

51800
552300
0010
0001
,
485400
292500
0010
0001
,
1000
0100
00721
00720
,
436000
133000
0001
0010
G:=sub<GL(4,GF(73))| [5,55,0,0,18,23,0,0,0,0,1,0,0,0,0,1],[48,29,0,0,54,25,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,72,72,0,0,1,0],[43,13,0,0,60,30,0,0,0,0,0,1,0,0,1,0] >;

D247S3 in GAP, Magma, Sage, TeX

D_{24}\rtimes_7S_3
% in TeX

G:=Group("D24:7S3");
// GroupNames label

G:=SmallGroup(288,455);
// by ID

G=gap.SmallGroup(288,455);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,253,135,142,346,80,1356,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^24=b^2=c^3=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=a^12*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽