d | ρ | Label | ID | ||
---|---|---|---|---|---|
Dic3×C2×C12 | 96 | Dic3xC2xC12 | 288,693 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C2×C4)⋊(C3×Dic3) = C3×C23.7D6 | φ: C3×Dic3/C32 → C4 ⊆ Aut C2×C4 | 24 | 4 | (C2xC4):(C3xDic3) | 288,268 |
(C2×C4)⋊2(C3×Dic3) = C3×C6.C42 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C2×C4 | 96 | (C2xC4):2(C3xDic3) | 288,265 | |
(C2×C4)⋊3(C3×Dic3) = C6×C4⋊Dic3 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C2×C4 | 96 | (C2xC4):3(C3xDic3) | 288,696 | |
(C2×C4)⋊4(C3×Dic3) = C3×C23.26D6 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C2×C4 | 48 | (C2xC4):4(C3xDic3) | 288,697 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C2×C4).(C3×Dic3) = C3×C12.10D4 | φ: C3×Dic3/C32 → C4 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).(C3xDic3) | 288,270 |
(C2×C4).2(C3×Dic3) = C3×C42.S3 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C2×C4 | 96 | (C2xC4).2(C3xDic3) | 288,237 | |
(C2×C4).3(C3×Dic3) = C3×C12.55D4 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C2×C4 | 48 | (C2xC4).3(C3xDic3) | 288,264 | |
(C2×C4).4(C3×Dic3) = C3×C12⋊C8 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C2×C4 | 96 | (C2xC4).4(C3xDic3) | 288,238 | |
(C2×C4).5(C3×Dic3) = C3×C12.C8 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C2×C4 | 48 | 2 | (C2xC4).5(C3xDic3) | 288,246 |
(C2×C4).6(C3×Dic3) = C6×C4.Dic3 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C2×C4 | 48 | (C2xC4).6(C3xDic3) | 288,692 | |
(C2×C4).7(C3×Dic3) = C12×C3⋊C8 | central extension (φ=1) | 96 | (C2xC4).7(C3xDic3) | 288,236 | |
(C2×C4).8(C3×Dic3) = C6×C3⋊C16 | central extension (φ=1) | 96 | (C2xC4).8(C3xDic3) | 288,245 | |
(C2×C4).9(C3×Dic3) = C2×C6×C3⋊C8 | central extension (φ=1) | 96 | (C2xC4).9(C3xDic3) | 288,691 |