Extensions 1→N→G→Q→1 with N=C2×C4 and Q=C3×Dic3

Direct product G=N×Q with N=C2×C4 and Q=C3×Dic3
dρLabelID
Dic3×C2×C1296Dic3xC2xC12288,693

Semidirect products G=N:Q with N=C2×C4 and Q=C3×Dic3
extensionφ:Q→Aut NdρLabelID
(C2×C4)⋊(C3×Dic3) = C3×C23.7D6φ: C3×Dic3/C32C4 ⊆ Aut C2×C4244(C2xC4):(C3xDic3)288,268
(C2×C4)⋊2(C3×Dic3) = C3×C6.C42φ: C3×Dic3/C3×C6C2 ⊆ Aut C2×C496(C2xC4):2(C3xDic3)288,265
(C2×C4)⋊3(C3×Dic3) = C6×C4⋊Dic3φ: C3×Dic3/C3×C6C2 ⊆ Aut C2×C496(C2xC4):3(C3xDic3)288,696
(C2×C4)⋊4(C3×Dic3) = C3×C23.26D6φ: C3×Dic3/C3×C6C2 ⊆ Aut C2×C448(C2xC4):4(C3xDic3)288,697

Non-split extensions G=N.Q with N=C2×C4 and Q=C3×Dic3
extensionφ:Q→Aut NdρLabelID
(C2×C4).(C3×Dic3) = C3×C12.10D4φ: C3×Dic3/C32C4 ⊆ Aut C2×C4484(C2xC4).(C3xDic3)288,270
(C2×C4).2(C3×Dic3) = C3×C42.S3φ: C3×Dic3/C3×C6C2 ⊆ Aut C2×C496(C2xC4).2(C3xDic3)288,237
(C2×C4).3(C3×Dic3) = C3×C12.55D4φ: C3×Dic3/C3×C6C2 ⊆ Aut C2×C448(C2xC4).3(C3xDic3)288,264
(C2×C4).4(C3×Dic3) = C3×C12⋊C8φ: C3×Dic3/C3×C6C2 ⊆ Aut C2×C496(C2xC4).4(C3xDic3)288,238
(C2×C4).5(C3×Dic3) = C3×C12.C8φ: C3×Dic3/C3×C6C2 ⊆ Aut C2×C4482(C2xC4).5(C3xDic3)288,246
(C2×C4).6(C3×Dic3) = C6×C4.Dic3φ: C3×Dic3/C3×C6C2 ⊆ Aut C2×C448(C2xC4).6(C3xDic3)288,692
(C2×C4).7(C3×Dic3) = C12×C3⋊C8central extension (φ=1)96(C2xC4).7(C3xDic3)288,236
(C2×C4).8(C3×Dic3) = C6×C3⋊C16central extension (φ=1)96(C2xC4).8(C3xDic3)288,245
(C2×C4).9(C3×Dic3) = C2×C6×C3⋊C8central extension (φ=1)96(C2xC4).9(C3xDic3)288,691

׿
×
𝔽