Copied to
clipboard

G = C3×C12.10D4order 288 = 25·32

Direct product of C3 and C12.10D4

direct product, metabelian, supersoluble, monomial

Aliases: C3×C12.10D4, (C2×C12).3C12, (C6×C12).12C4, (C3×C12).48D4, C12.10(C3×D4), (C6×Q8).27S3, (C6×Q8).10C6, (C2×C12).223D6, C62.99(C2×C4), (C2×C12).3Dic3, C4.Dic3.4C6, (C6×C12).50C22, C22.4(C6×Dic3), C12.102(C3⋊D4), C327(C4.10D4), C6.35(C6.D4), (Q8×C3×C6).2C2, (C2×C4).4(S3×C6), (C2×C4).(C3×Dic3), C4.15(C3×C3⋊D4), (C2×Q8).6(C3×S3), (C2×C12).20(C2×C6), (C2×C6).40(C2×C12), C32(C3×C4.10D4), C6.17(C3×C22⋊C4), (C2×C6).25(C2×Dic3), C2.7(C3×C6.D4), (C3×C4.Dic3).8C2, (C3×C6).68(C22⋊C4), SmallGroup(288,270)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C3×C12.10D4
C1C3C6C2×C6C2×C12C6×C12C3×C4.Dic3 — C3×C12.10D4
C3C6C2×C6 — C3×C12.10D4
C1C6C2×C12C6×Q8

Generators and relations for C3×C12.10D4
 G = < a,b,c,d | a3=b12=1, c4=b6, d2=b9, ab=ba, ac=ca, ad=da, cbc-1=b-1, dbd-1=b5, dcd-1=b9c3 >

Subgroups: 170 in 95 conjugacy classes, 42 normal (22 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C6, C6, C8, C2×C4, C2×C4, Q8, C32, C12, C12, C2×C6, C2×C6, M4(2), C2×Q8, C3×C6, C3×C6, C3⋊C8, C24, C2×C12, C2×C12, C2×C12, C3×Q8, C4.10D4, C3×C12, C3×C12, C62, C4.Dic3, C3×M4(2), C6×Q8, C6×Q8, C3×C3⋊C8, C6×C12, C6×C12, Q8×C32, C12.10D4, C3×C4.10D4, C3×C4.Dic3, Q8×C3×C6, C3×C12.10D4
Quotients: C1, C2, C3, C4, C22, S3, C6, C2×C4, D4, Dic3, C12, D6, C2×C6, C22⋊C4, C3×S3, C2×Dic3, C3⋊D4, C2×C12, C3×D4, C4.10D4, C3×Dic3, S3×C6, C6.D4, C3×C22⋊C4, C6×Dic3, C3×C3⋊D4, C12.10D4, C3×C4.10D4, C3×C6.D4, C3×C12.10D4

Smallest permutation representation of C3×C12.10D4
On 48 points
Generators in S48
(1 5 9)(2 6 10)(3 7 11)(4 8 12)(13 17 21)(14 18 22)(15 19 23)(16 20 24)(25 33 29)(26 34 30)(27 35 31)(28 36 32)(37 45 41)(38 46 42)(39 47 43)(40 48 44)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 41 4 38 7 47 10 44)(2 40 5 37 8 46 11 43)(3 39 6 48 9 45 12 42)(13 36 16 33 19 30 22 27)(14 35 17 32 20 29 23 26)(15 34 18 31 21 28 24 25)
(1 36 10 33 7 30 4 27)(2 29 11 26 8 35 5 32)(3 34 12 31 9 28 6 25)(13 47 22 44 19 41 16 38)(14 40 23 37 20 46 17 43)(15 45 24 42 21 39 18 48)

G:=sub<Sym(48)| (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,17,21)(14,18,22)(15,19,23)(16,20,24)(25,33,29)(26,34,30)(27,35,31)(28,36,32)(37,45,41)(38,46,42)(39,47,43)(40,48,44), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,41,4,38,7,47,10,44)(2,40,5,37,8,46,11,43)(3,39,6,48,9,45,12,42)(13,36,16,33,19,30,22,27)(14,35,17,32,20,29,23,26)(15,34,18,31,21,28,24,25), (1,36,10,33,7,30,4,27)(2,29,11,26,8,35,5,32)(3,34,12,31,9,28,6,25)(13,47,22,44,19,41,16,38)(14,40,23,37,20,46,17,43)(15,45,24,42,21,39,18,48)>;

G:=Group( (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,17,21)(14,18,22)(15,19,23)(16,20,24)(25,33,29)(26,34,30)(27,35,31)(28,36,32)(37,45,41)(38,46,42)(39,47,43)(40,48,44), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,41,4,38,7,47,10,44)(2,40,5,37,8,46,11,43)(3,39,6,48,9,45,12,42)(13,36,16,33,19,30,22,27)(14,35,17,32,20,29,23,26)(15,34,18,31,21,28,24,25), (1,36,10,33,7,30,4,27)(2,29,11,26,8,35,5,32)(3,34,12,31,9,28,6,25)(13,47,22,44,19,41,16,38)(14,40,23,37,20,46,17,43)(15,45,24,42,21,39,18,48) );

G=PermutationGroup([[(1,5,9),(2,6,10),(3,7,11),(4,8,12),(13,17,21),(14,18,22),(15,19,23),(16,20,24),(25,33,29),(26,34,30),(27,35,31),(28,36,32),(37,45,41),(38,46,42),(39,47,43),(40,48,44)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,41,4,38,7,47,10,44),(2,40,5,37,8,46,11,43),(3,39,6,48,9,45,12,42),(13,36,16,33,19,30,22,27),(14,35,17,32,20,29,23,26),(15,34,18,31,21,28,24,25)], [(1,36,10,33,7,30,4,27),(2,29,11,26,8,35,5,32),(3,34,12,31,9,28,6,25),(13,47,22,44,19,41,16,38),(14,40,23,37,20,46,17,43),(15,45,24,42,21,39,18,48)]])

63 conjugacy classes

class 1 2A2B3A3B3C3D3E4A4B4C4D6A6B6C···6M8A8B8C8D12A12B12C12D12E···12Z24A···24H
order122333334444666···688881212121212···1224···24
size112112222244112···21212121222224···412···12

63 irreducible representations

dim1111111122222222224444
type+++++-+-
imageC1C2C2C3C4C6C6C12S3D4Dic3D6C3×S3C3⋊D4C3×D4C3×Dic3S3×C6C3×C3⋊D4C4.10D4C12.10D4C3×C4.10D4C3×C12.10D4
kernelC3×C12.10D4C3×C4.Dic3Q8×C3×C6C12.10D4C6×C12C4.Dic3C6×Q8C2×C12C6×Q8C3×C12C2×C12C2×C12C2×Q8C12C12C2×C4C2×C4C4C32C3C3C1
# reps1212442812212444281224

Matrix representation of C3×C12.10D4 in GL4(𝔽7) generated by

2000
0200
0020
0002
,
0310
0304
2606
6034
,
2120
0351
4021
6010
,
0231
1311
4303
4454
G:=sub<GL(4,GF(7))| [2,0,0,0,0,2,0,0,0,0,2,0,0,0,0,2],[0,0,2,6,3,3,6,0,1,0,0,3,0,4,6,4],[2,0,4,6,1,3,0,0,2,5,2,1,0,1,1,0],[0,1,4,4,2,3,3,4,3,1,0,5,1,1,3,4] >;

C3×C12.10D4 in GAP, Magma, Sage, TeX

C_3\times C_{12}._{10}D_4
% in TeX

G:=Group("C3xC12.10D4");
// GroupNames label

G:=SmallGroup(288,270);
// by ID

G=gap.SmallGroup(288,270);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-2,-3,84,365,344,850,136,2524,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^12=1,c^4=b^6,d^2=b^9,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^-1,d*b*d^-1=b^5,d*c*d^-1=b^9*c^3>;
// generators/relations

׿
×
𝔽