Extensions 1→N→G→Q→1 with N=C2×Dic9 and Q=C4

Direct product G=N×Q with N=C2×Dic9 and Q=C4
dρLabelID
C2×C4×Dic9288C2xC4xDic9288,132

Semidirect products G=N:Q with N=C2×Dic9 and Q=C4
extensionφ:Q→Out NdρLabelID
(C2×Dic9)⋊C4 = C22.D36φ: C4/C1C4 ⊆ Out C2×Dic9724(C2xDic9):C4288,13
(C2×Dic9)⋊2C4 = C18.C42φ: C4/C2C2 ⊆ Out C2×Dic9288(C2xDic9):2C4288,38
(C2×Dic9)⋊3C4 = C23.16D18φ: C4/C2C2 ⊆ Out C2×Dic9144(C2xDic9):3C4288,87
(C2×Dic9)⋊4C4 = C2×Dic9⋊C4φ: C4/C2C2 ⊆ Out C2×Dic9288(C2xDic9):4C4288,133

Non-split extensions G=N.Q with N=C2×Dic9 and Q=C4
extensionφ:Q→Out NdρLabelID
(C2×Dic9).C4 = C4.D36φ: C4/C1C4 ⊆ Out C2×Dic91444-(C2xDic9).C4288,30
(C2×Dic9).2C4 = Dic9⋊C8φ: C4/C2C2 ⊆ Out C2×Dic9288(C2xDic9).2C4288,22
(C2×Dic9).3C4 = C72⋊C4φ: C4/C2C2 ⊆ Out C2×Dic9288(C2xDic9).3C4288,23
(C2×Dic9).4C4 = D18⋊C8φ: C4/C2C2 ⊆ Out C2×Dic9144(C2xDic9).4C4288,27
(C2×Dic9).5C4 = C2×C8⋊D9φ: C4/C2C2 ⊆ Out C2×Dic9144(C2xDic9).5C4288,111
(C2×Dic9).6C4 = M4(2)×D9φ: C4/C2C2 ⊆ Out C2×Dic9724(C2xDic9).6C4288,116
(C2×Dic9).7C4 = C8×Dic9φ: trivial image288(C2xDic9).7C4288,21
(C2×Dic9).8C4 = C2×C8×D9φ: trivial image144(C2xDic9).8C4288,110

׿
×
𝔽