Copied to
clipboard

G = C4.D36order 288 = 25·32

3rd non-split extension by C4 of D36 acting via D36/D18=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C12.3D12, C36.47D4, C4.11D36, M4(2).2D9, (C2×C4).1D18, (C2×Dic9).C4, (C2×C12).42D6, C22.4(C4×D9), C6.15(D6⋊C4), C2.9(D18⋊C4), C4.21(C9⋊D4), C91(C4.10D4), C4.Dic9.3C2, C18.8(C22⋊C4), (C2×C36).20C22, C3.(C12.47D4), (C2×Dic18).6C2, (C9×M4(2)).2C2, (C3×M4(2)).6S3, C12.108(C3⋊D4), (C2×C6).3(C4×S3), (C2×C18).2(C2×C4), SmallGroup(288,30)

Series: Derived Chief Lower central Upper central

C1C2×C18 — C4.D36
C1C3C9C18C36C2×C36C2×Dic18 — C4.D36
C9C18C2×C18 — C4.D36
C1C2C2×C4M4(2)

Generators and relations for C4.D36
 G = < a,b,c | a36=1, b4=c2=a18, bab-1=cac-1=a-1, cbc-1=a9b3 >

Subgroups: 228 in 57 conjugacy classes, 26 normal (24 characteristic)
C1, C2, C2, C3, C4, C4, C22, C6, C6, C8, C2×C4, C2×C4, Q8, C9, Dic3, C12, C2×C6, M4(2), M4(2), C2×Q8, C18, C18, C3⋊C8, C24, Dic6, C2×Dic3, C2×C12, C4.10D4, Dic9, C36, C2×C18, C4.Dic3, C3×M4(2), C2×Dic6, C9⋊C8, C72, Dic18, C2×Dic9, C2×C36, C12.47D4, C4.Dic9, C9×M4(2), C2×Dic18, C4.D36
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, D6, C22⋊C4, D9, C4×S3, D12, C3⋊D4, C4.10D4, D18, D6⋊C4, C4×D9, D36, C9⋊D4, C12.47D4, D18⋊C4, C4.D36

Smallest permutation representation of C4.D36
On 144 points
Generators in S144
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 114 10 141 19 132 28 123)(2 113 11 140 20 131 29 122)(3 112 12 139 21 130 30 121)(4 111 13 138 22 129 31 120)(5 110 14 137 23 128 32 119)(6 109 15 136 24 127 33 118)(7 144 16 135 25 126 34 117)(8 143 17 134 26 125 35 116)(9 142 18 133 27 124 36 115)(37 98 64 107 55 80 46 89)(38 97 65 106 56 79 47 88)(39 96 66 105 57 78 48 87)(40 95 67 104 58 77 49 86)(41 94 68 103 59 76 50 85)(42 93 69 102 60 75 51 84)(43 92 70 101 61 74 52 83)(44 91 71 100 62 73 53 82)(45 90 72 99 63 108 54 81)
(1 90 19 108)(2 89 20 107)(3 88 21 106)(4 87 22 105)(5 86 23 104)(6 85 24 103)(7 84 25 102)(8 83 26 101)(9 82 27 100)(10 81 28 99)(11 80 29 98)(12 79 30 97)(13 78 31 96)(14 77 32 95)(15 76 33 94)(16 75 34 93)(17 74 35 92)(18 73 36 91)(37 113 55 131)(38 112 56 130)(39 111 57 129)(40 110 58 128)(41 109 59 127)(42 144 60 126)(43 143 61 125)(44 142 62 124)(45 141 63 123)(46 140 64 122)(47 139 65 121)(48 138 66 120)(49 137 67 119)(50 136 68 118)(51 135 69 117)(52 134 70 116)(53 133 71 115)(54 132 72 114)

G:=sub<Sym(144)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,114,10,141,19,132,28,123)(2,113,11,140,20,131,29,122)(3,112,12,139,21,130,30,121)(4,111,13,138,22,129,31,120)(5,110,14,137,23,128,32,119)(6,109,15,136,24,127,33,118)(7,144,16,135,25,126,34,117)(8,143,17,134,26,125,35,116)(9,142,18,133,27,124,36,115)(37,98,64,107,55,80,46,89)(38,97,65,106,56,79,47,88)(39,96,66,105,57,78,48,87)(40,95,67,104,58,77,49,86)(41,94,68,103,59,76,50,85)(42,93,69,102,60,75,51,84)(43,92,70,101,61,74,52,83)(44,91,71,100,62,73,53,82)(45,90,72,99,63,108,54,81), (1,90,19,108)(2,89,20,107)(3,88,21,106)(4,87,22,105)(5,86,23,104)(6,85,24,103)(7,84,25,102)(8,83,26,101)(9,82,27,100)(10,81,28,99)(11,80,29,98)(12,79,30,97)(13,78,31,96)(14,77,32,95)(15,76,33,94)(16,75,34,93)(17,74,35,92)(18,73,36,91)(37,113,55,131)(38,112,56,130)(39,111,57,129)(40,110,58,128)(41,109,59,127)(42,144,60,126)(43,143,61,125)(44,142,62,124)(45,141,63,123)(46,140,64,122)(47,139,65,121)(48,138,66,120)(49,137,67,119)(50,136,68,118)(51,135,69,117)(52,134,70,116)(53,133,71,115)(54,132,72,114)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,114,10,141,19,132,28,123)(2,113,11,140,20,131,29,122)(3,112,12,139,21,130,30,121)(4,111,13,138,22,129,31,120)(5,110,14,137,23,128,32,119)(6,109,15,136,24,127,33,118)(7,144,16,135,25,126,34,117)(8,143,17,134,26,125,35,116)(9,142,18,133,27,124,36,115)(37,98,64,107,55,80,46,89)(38,97,65,106,56,79,47,88)(39,96,66,105,57,78,48,87)(40,95,67,104,58,77,49,86)(41,94,68,103,59,76,50,85)(42,93,69,102,60,75,51,84)(43,92,70,101,61,74,52,83)(44,91,71,100,62,73,53,82)(45,90,72,99,63,108,54,81), (1,90,19,108)(2,89,20,107)(3,88,21,106)(4,87,22,105)(5,86,23,104)(6,85,24,103)(7,84,25,102)(8,83,26,101)(9,82,27,100)(10,81,28,99)(11,80,29,98)(12,79,30,97)(13,78,31,96)(14,77,32,95)(15,76,33,94)(16,75,34,93)(17,74,35,92)(18,73,36,91)(37,113,55,131)(38,112,56,130)(39,111,57,129)(40,110,58,128)(41,109,59,127)(42,144,60,126)(43,143,61,125)(44,142,62,124)(45,141,63,123)(46,140,64,122)(47,139,65,121)(48,138,66,120)(49,137,67,119)(50,136,68,118)(51,135,69,117)(52,134,70,116)(53,133,71,115)(54,132,72,114) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,114,10,141,19,132,28,123),(2,113,11,140,20,131,29,122),(3,112,12,139,21,130,30,121),(4,111,13,138,22,129,31,120),(5,110,14,137,23,128,32,119),(6,109,15,136,24,127,33,118),(7,144,16,135,25,126,34,117),(8,143,17,134,26,125,35,116),(9,142,18,133,27,124,36,115),(37,98,64,107,55,80,46,89),(38,97,65,106,56,79,47,88),(39,96,66,105,57,78,48,87),(40,95,67,104,58,77,49,86),(41,94,68,103,59,76,50,85),(42,93,69,102,60,75,51,84),(43,92,70,101,61,74,52,83),(44,91,71,100,62,73,53,82),(45,90,72,99,63,108,54,81)], [(1,90,19,108),(2,89,20,107),(3,88,21,106),(4,87,22,105),(5,86,23,104),(6,85,24,103),(7,84,25,102),(8,83,26,101),(9,82,27,100),(10,81,28,99),(11,80,29,98),(12,79,30,97),(13,78,31,96),(14,77,32,95),(15,76,33,94),(16,75,34,93),(17,74,35,92),(18,73,36,91),(37,113,55,131),(38,112,56,130),(39,111,57,129),(40,110,58,128),(41,109,59,127),(42,144,60,126),(43,143,61,125),(44,142,62,124),(45,141,63,123),(46,140,64,122),(47,139,65,121),(48,138,66,120),(49,137,67,119),(50,136,68,118),(51,135,69,117),(52,134,70,116),(53,133,71,115),(54,132,72,114)]])

51 conjugacy classes

class 1 2A2B 3 4A4B4C4D6A6B8A8B8C8D9A9B9C12A12B12C18A18B18C18D18E18F24A24B24C24D36A···36F36G36H36I72A···72L
order122344446688889991212121818181818182424242436···3636363672···72
size11222236362444363622222422244444442···24444···4

51 irreducible representations

dim1111122222222222444
type+++++++++++---
imageC1C2C2C2C4S3D4D6D9D12C3⋊D4C4×S3D18D36C9⋊D4C4×D9C4.10D4C12.47D4C4.D36
kernelC4.D36C4.Dic9C9×M4(2)C2×Dic18C2×Dic9C3×M4(2)C36C2×C12M4(2)C12C12C2×C6C2×C4C4C4C22C9C3C1
# reps1111412132223666126

Matrix representation of C4.D36 in GL4(𝔽73) generated by

251900
544400
002519
005444
,
00145
001959
511200
632200
,
14500
195900
00145
001959
G:=sub<GL(4,GF(73))| [25,54,0,0,19,44,0,0,0,0,25,54,0,0,19,44],[0,0,51,63,0,0,12,22,14,19,0,0,5,59,0,0],[14,19,0,0,5,59,0,0,0,0,14,19,0,0,5,59] >;

C4.D36 in GAP, Magma, Sage, TeX

C_4.D_{36}
% in TeX

G:=Group("C4.D36");
// GroupNames label

G:=SmallGroup(288,30);
// by ID

G=gap.SmallGroup(288,30);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,112,141,36,422,100,346,6725,292,9414]);
// Polycyclic

G:=Group<a,b,c|a^36=1,b^4=c^2=a^18,b*a*b^-1=c*a*c^-1=a^-1,c*b*c^-1=a^9*b^3>;
// generators/relations

׿
×
𝔽