Extensions 1→N→G→Q→1 with N=C3×C3⋊Q16 and Q=C2

Direct product G=N×Q with N=C3×C3⋊Q16 and Q=C2
dρLabelID
C6×C3⋊Q1696C6xC3:Q16288,714

Semidirect products G=N:Q with N=C3×C3⋊Q16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×C3⋊Q16)⋊1C2 = S3×C3⋊Q16φ: C2/C1C2 ⊆ Out C3×C3⋊Q16968-(C3xC3:Q16):1C2288,590
(C3×C3⋊Q16)⋊2C2 = Dic6.9D6φ: C2/C1C2 ⊆ Out C3×C3⋊Q16488-(C3xC3:Q16):2C2288,592
(C3×C3⋊Q16)⋊3C2 = D12.13D6φ: C2/C1C2 ⊆ Out C3×C3⋊Q16488+(C3xC3:Q16):3C2288,597
(C3×C3⋊Q16)⋊4C2 = D12.14D6φ: C2/C1C2 ⊆ Out C3×C3⋊Q16488+(C3xC3:Q16):4C2288,598
(C3×C3⋊Q16)⋊5C2 = D12.11D6φ: C2/C1C2 ⊆ Out C3×C3⋊Q16968-(C3xC3:Q16):5C2288,591
(C3×C3⋊Q16)⋊6C2 = Dic6.10D6φ: C2/C1C2 ⊆ Out C3×C3⋊Q16488+(C3xC3:Q16):6C2288,593
(C3×C3⋊Q16)⋊7C2 = Dic6.22D6φ: C2/C1C2 ⊆ Out C3×C3⋊Q16488+(C3xC3:Q16):7C2288,596
(C3×C3⋊Q16)⋊8C2 = D12.15D6φ: C2/C1C2 ⊆ Out C3×C3⋊Q16488-(C3xC3:Q16):8C2288,599
(C3×C3⋊Q16)⋊9C2 = C3×Q8.7D6φ: C2/C1C2 ⊆ Out C3×C3⋊Q16484(C3xC3:Q16):9C2288,687
(C3×C3⋊Q16)⋊10C2 = C3×S3×Q16φ: C2/C1C2 ⊆ Out C3×C3⋊Q16964(C3xC3:Q16):10C2288,688
(C3×C3⋊Q16)⋊11C2 = C3×D4.D6φ: C2/C1C2 ⊆ Out C3×C3⋊Q16484(C3xC3:Q16):11C2288,686
(C3×C3⋊Q16)⋊12C2 = C3×Q16⋊S3φ: C2/C1C2 ⊆ Out C3×C3⋊Q16964(C3xC3:Q16):12C2288,689
(C3×C3⋊Q16)⋊13C2 = C3×Q8.11D6φ: C2/C1C2 ⊆ Out C3×C3⋊Q16484(C3xC3:Q16):13C2288,713
(C3×C3⋊Q16)⋊14C2 = C3×Q8.14D6φ: C2/C1C2 ⊆ Out C3×C3⋊Q16484(C3xC3:Q16):14C2288,722
(C3×C3⋊Q16)⋊15C2 = C3×Q8.13D6φ: trivial image484(C3xC3:Q16):15C2288,721


׿
×
𝔽