metabelian, supersoluble, monomial
Aliases: D12.14D6, Dic6.12D6, C3⋊C8.19D6, Q8.16S32, C3⋊Q16⋊5S3, C6.65(S3×D4), Q8⋊2S3⋊5S3, (C3×Q8).34D6, D12⋊S3⋊6C2, C3⋊D24⋊10C2, C32⋊15(C4○D8), C3⋊Dic3.61D4, C3⋊3(D24⋊C2), C12.29D6⋊2C2, C3⋊4(Q8.7D6), C12.26D6⋊2C2, C12.27(C22×S3), (C3×C12).27C23, C32⋊5SD16⋊14C2, C2.25(Dic3⋊D6), (C3×D12).23C22, C12⋊S3.15C22, (Q8×C32).9C22, (C3×Dic6).22C22, C4.27(C2×S32), (C2×C3⋊S3).26D4, (C3×C3⋊Q16)⋊4C2, (C3×C3⋊C8).9C22, (C3×Q8⋊2S3)⋊8C2, (C3×C6).142(C2×D4), (C4×C3⋊S3).21C22, SmallGroup(288,598)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D12.14D6
G = < a,b,c,d | a12=b2=1, c6=a6, d2=a3, bab=a-1, cac-1=a7, ad=da, cbc-1=dbd-1=a3b, dcd-1=a3c5 >
Subgroups: 666 in 144 conjugacy classes, 38 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C8, C2×C4, D4, Q8, Q8, C32, Dic3, C12, C12, D6, C2×C6, C2×C8, D8, SD16, Q16, C4○D4, C3×S3, C3⋊S3, C3×C6, C3⋊C8, C24, Dic6, C4×S3, D12, D12, C2×Dic3, C3⋊D4, C3×D4, C3×Q8, C3×Q8, C4○D8, C3×Dic3, C3⋊Dic3, C3×C12, C3×C12, S3×C6, C2×C3⋊S3, C2×C3⋊S3, S3×C8, C24⋊C2, D24, D4⋊S3, Q8⋊2S3, Q8⋊2S3, C3⋊Q16, C3×SD16, C3×Q16, D4⋊2S3, Q8⋊3S3, C3×C3⋊C8, S3×Dic3, C3⋊D12, C3×Dic6, C3×D12, C4×C3⋊S3, C4×C3⋊S3, C12⋊S3, C12⋊S3, Q8×C32, Q8.7D6, D24⋊C2, C12.29D6, C3⋊D24, C32⋊5SD16, C3×Q8⋊2S3, C3×C3⋊Q16, D12⋊S3, C12.26D6, D12.14D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C22×S3, C4○D8, S32, S3×D4, C2×S32, Q8.7D6, D24⋊C2, Dic3⋊D6, D12.14D6
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 45)(2 44)(3 43)(4 42)(5 41)(6 40)(7 39)(8 38)(9 37)(10 48)(11 47)(12 46)(13 36)(14 35)(15 34)(16 33)(17 32)(18 31)(19 30)(20 29)(21 28)(22 27)(23 26)(24 25)
(1 14 3 16 5 18 7 20 9 22 11 24)(2 21 4 23 6 13 8 15 10 17 12 19)(25 42 35 40 33 38 31 48 29 46 27 44)(26 37 36 47 34 45 32 43 30 41 28 39)
(1 41 4 44 7 47 10 38)(2 42 5 45 8 48 11 39)(3 43 6 46 9 37 12 40)(13 26 16 29 19 32 22 35)(14 27 17 30 20 33 23 36)(15 28 18 31 21 34 24 25)
G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,45)(2,44)(3,43)(4,42)(5,41)(6,40)(7,39)(8,38)(9,37)(10,48)(11,47)(12,46)(13,36)(14,35)(15,34)(16,33)(17,32)(18,31)(19,30)(20,29)(21,28)(22,27)(23,26)(24,25), (1,14,3,16,5,18,7,20,9,22,11,24)(2,21,4,23,6,13,8,15,10,17,12,19)(25,42,35,40,33,38,31,48,29,46,27,44)(26,37,36,47,34,45,32,43,30,41,28,39), (1,41,4,44,7,47,10,38)(2,42,5,45,8,48,11,39)(3,43,6,46,9,37,12,40)(13,26,16,29,19,32,22,35)(14,27,17,30,20,33,23,36)(15,28,18,31,21,34,24,25)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,45)(2,44)(3,43)(4,42)(5,41)(6,40)(7,39)(8,38)(9,37)(10,48)(11,47)(12,46)(13,36)(14,35)(15,34)(16,33)(17,32)(18,31)(19,30)(20,29)(21,28)(22,27)(23,26)(24,25), (1,14,3,16,5,18,7,20,9,22,11,24)(2,21,4,23,6,13,8,15,10,17,12,19)(25,42,35,40,33,38,31,48,29,46,27,44)(26,37,36,47,34,45,32,43,30,41,28,39), (1,41,4,44,7,47,10,38)(2,42,5,45,8,48,11,39)(3,43,6,46,9,37,12,40)(13,26,16,29,19,32,22,35)(14,27,17,30,20,33,23,36)(15,28,18,31,21,34,24,25) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,45),(2,44),(3,43),(4,42),(5,41),(6,40),(7,39),(8,38),(9,37),(10,48),(11,47),(12,46),(13,36),(14,35),(15,34),(16,33),(17,32),(18,31),(19,30),(20,29),(21,28),(22,27),(23,26),(24,25)], [(1,14,3,16,5,18,7,20,9,22,11,24),(2,21,4,23,6,13,8,15,10,17,12,19),(25,42,35,40,33,38,31,48,29,46,27,44),(26,37,36,47,34,45,32,43,30,41,28,39)], [(1,41,4,44,7,47,10,38),(2,42,5,45,8,48,11,39),(3,43,6,46,9,37,12,40),(13,26,16,29,19,32,22,35),(14,27,17,30,20,33,23,36),(15,28,18,31,21,34,24,25)]])
33 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 3A | 3B | 3C | 4A | 4B | 4C | 4D | 4E | 6A | 6B | 6C | 6D | 8A | 8B | 8C | 8D | 12A | 12B | 12C | ··· | 12G | 12H | 24A | 24B | 24C | 24D |
order | 1 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 12 | 12 | 12 | ··· | 12 | 12 | 24 | 24 | 24 | 24 |
size | 1 | 1 | 12 | 18 | 36 | 2 | 2 | 4 | 2 | 4 | 9 | 9 | 12 | 2 | 2 | 4 | 24 | 6 | 6 | 6 | 6 | 4 | 4 | 8 | ··· | 8 | 24 | 12 | 12 | 12 | 12 |
33 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 8 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | S3 | S3 | D4 | D4 | D6 | D6 | D6 | D6 | C4○D8 | S32 | S3×D4 | C2×S32 | Q8.7D6 | D24⋊C2 | Dic3⋊D6 | D12.14D6 |
kernel | D12.14D6 | C12.29D6 | C3⋊D24 | C32⋊5SD16 | C3×Q8⋊2S3 | C3×C3⋊Q16 | D12⋊S3 | C12.26D6 | Q8⋊2S3 | C3⋊Q16 | C3⋊Dic3 | C2×C3⋊S3 | C3⋊C8 | Dic6 | D12 | C3×Q8 | C32 | Q8 | C6 | C4 | C3 | C3 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 2 | 4 | 1 | 2 | 1 | 2 | 2 | 2 | 1 |
Matrix representation of D12.14D6 ►in GL6(𝔽73)
72 | 3 | 0 | 0 | 0 | 0 |
48 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 72 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 25 | 0 | 0 | 0 | 0 |
38 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
27 | 0 | 0 | 0 | 0 | 0 |
18 | 46 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 72 |
0 | 0 | 0 | 0 | 1 | 1 |
41 | 48 | 0 | 0 | 0 | 0 |
38 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(6,GF(73))| [72,48,0,0,0,0,3,1,0,0,0,0,0,0,0,72,0,0,0,0,1,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,38,0,0,0,0,25,0,0,0,0,0,0,0,0,72,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[27,18,0,0,0,0,0,46,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,72,1],[41,38,0,0,0,0,48,0,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;
D12.14D6 in GAP, Magma, Sage, TeX
D_{12}._{14}D_6
% in TeX
G:=Group("D12.14D6");
// GroupNames label
G:=SmallGroup(288,598);
// by ID
G=gap.SmallGroup(288,598);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,120,254,135,100,675,346,185,80,1356,9414]);
// Polycyclic
G:=Group<a,b,c,d|a^12=b^2=1,c^6=a^6,d^2=a^3,b*a*b=a^-1,c*a*c^-1=a^7,a*d=d*a,c*b*c^-1=d*b*d^-1=a^3*b,d*c*d^-1=a^3*c^5>;
// generators/relations