metacyclic, supersoluble, monomial, 2-hyperelementary
Aliases: D148, C4⋊D37, C37⋊1D4, C148⋊1C2, D74⋊1C2, C2.4D74, C74.3C22, sometimes denoted D296 or Dih148 or Dih296, SmallGroup(296,6)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D148
G = < a,b | a148=b2=1, bab=a-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148)
(1 148)(2 147)(3 146)(4 145)(5 144)(6 143)(7 142)(8 141)(9 140)(10 139)(11 138)(12 137)(13 136)(14 135)(15 134)(16 133)(17 132)(18 131)(19 130)(20 129)(21 128)(22 127)(23 126)(24 125)(25 124)(26 123)(27 122)(28 121)(29 120)(30 119)(31 118)(32 117)(33 116)(34 115)(35 114)(36 113)(37 112)(38 111)(39 110)(40 109)(41 108)(42 107)(43 106)(44 105)(45 104)(46 103)(47 102)(48 101)(49 100)(50 99)(51 98)(52 97)(53 96)(54 95)(55 94)(56 93)(57 92)(58 91)(59 90)(60 89)(61 88)(62 87)(63 86)(64 85)(65 84)(66 83)(67 82)(68 81)(69 80)(70 79)(71 78)(72 77)(73 76)(74 75)
G:=sub<Sym(148)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148), (1,148)(2,147)(3,146)(4,145)(5,144)(6,143)(7,142)(8,141)(9,140)(10,139)(11,138)(12,137)(13,136)(14,135)(15,134)(16,133)(17,132)(18,131)(19,130)(20,129)(21,128)(22,127)(23,126)(24,125)(25,124)(26,123)(27,122)(28,121)(29,120)(30,119)(31,118)(32,117)(33,116)(34,115)(35,114)(36,113)(37,112)(38,111)(39,110)(40,109)(41,108)(42,107)(43,106)(44,105)(45,104)(46,103)(47,102)(48,101)(49,100)(50,99)(51,98)(52,97)(53,96)(54,95)(55,94)(56,93)(57,92)(58,91)(59,90)(60,89)(61,88)(62,87)(63,86)(64,85)(65,84)(66,83)(67,82)(68,81)(69,80)(70,79)(71,78)(72,77)(73,76)(74,75)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148), (1,148)(2,147)(3,146)(4,145)(5,144)(6,143)(7,142)(8,141)(9,140)(10,139)(11,138)(12,137)(13,136)(14,135)(15,134)(16,133)(17,132)(18,131)(19,130)(20,129)(21,128)(22,127)(23,126)(24,125)(25,124)(26,123)(27,122)(28,121)(29,120)(30,119)(31,118)(32,117)(33,116)(34,115)(35,114)(36,113)(37,112)(38,111)(39,110)(40,109)(41,108)(42,107)(43,106)(44,105)(45,104)(46,103)(47,102)(48,101)(49,100)(50,99)(51,98)(52,97)(53,96)(54,95)(55,94)(56,93)(57,92)(58,91)(59,90)(60,89)(61,88)(62,87)(63,86)(64,85)(65,84)(66,83)(67,82)(68,81)(69,80)(70,79)(71,78)(72,77)(73,76)(74,75) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148)], [(1,148),(2,147),(3,146),(4,145),(5,144),(6,143),(7,142),(8,141),(9,140),(10,139),(11,138),(12,137),(13,136),(14,135),(15,134),(16,133),(17,132),(18,131),(19,130),(20,129),(21,128),(22,127),(23,126),(24,125),(25,124),(26,123),(27,122),(28,121),(29,120),(30,119),(31,118),(32,117),(33,116),(34,115),(35,114),(36,113),(37,112),(38,111),(39,110),(40,109),(41,108),(42,107),(43,106),(44,105),(45,104),(46,103),(47,102),(48,101),(49,100),(50,99),(51,98),(52,97),(53,96),(54,95),(55,94),(56,93),(57,92),(58,91),(59,90),(60,89),(61,88),(62,87),(63,86),(64,85),(65,84),(66,83),(67,82),(68,81),(69,80),(70,79),(71,78),(72,77),(73,76),(74,75)]])
77 conjugacy classes
class | 1 | 2A | 2B | 2C | 4 | 37A | ··· | 37R | 74A | ··· | 74R | 148A | ··· | 148AJ |
order | 1 | 2 | 2 | 2 | 4 | 37 | ··· | 37 | 74 | ··· | 74 | 148 | ··· | 148 |
size | 1 | 1 | 74 | 74 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
77 irreducible representations
dim | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | D4 | D37 | D74 | D148 |
kernel | D148 | C148 | D74 | C37 | C4 | C2 | C1 |
# reps | 1 | 1 | 2 | 1 | 18 | 18 | 36 |
Matrix representation of D148 ►in GL2(𝔽149) generated by
108 | 123 |
26 | 31 |
108 | 123 |
99 | 41 |
G:=sub<GL(2,GF(149))| [108,26,123,31],[108,99,123,41] >;
D148 in GAP, Magma, Sage, TeX
D_{148}
% in TeX
G:=Group("D148");
// GroupNames label
G:=SmallGroup(296,6);
// by ID
G=gap.SmallGroup(296,6);
# by ID
G:=PCGroup([4,-2,-2,-2,-37,49,21,4611]);
// Polycyclic
G:=Group<a,b|a^148=b^2=1,b*a*b=a^-1>;
// generators/relations
Export