Extensions 1→N→G→Q→1 with N=C4×D19 and Q=C2

Direct product G=N×Q with N=C4×D19 and Q=C2
dρLabelID
C2×C4×D19152C2xC4xD19304,28

Semidirect products G=N:Q with N=C4×D19 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4×D19)⋊1C2 = D4×D19φ: C2/C1C2 ⊆ Out C4×D19764+(C4xD19):1C2304,31
(C4×D19)⋊2C2 = D42D19φ: C2/C1C2 ⊆ Out C4×D191524-(C4xD19):2C2304,32
(C4×D19)⋊3C2 = D76⋊C2φ: C2/C1C2 ⊆ Out C4×D191524+(C4xD19):3C2304,34
(C4×D19)⋊4C2 = D765C2φ: C2/C1C2 ⊆ Out C4×D191522(C4xD19):4C2304,30

Non-split extensions G=N.Q with N=C4×D19 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4×D19).1C2 = Q8×D19φ: C2/C1C2 ⊆ Out C4×D191524-(C4xD19).1C2304,33
(C4×D19).2C2 = C8⋊D19φ: C2/C1C2 ⊆ Out C4×D191522(C4xD19).2C2304,4
(C4×D19).3C2 = C8×D19φ: trivial image1522(C4xD19).3C2304,3

׿
×
𝔽