Copied to
clipboard

G = D76⋊C2order 304 = 24·19

4th semidirect product of D76 and C2 acting faithfully

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D764C2, Q82D19, C4.7D38, C38.8C23, C76.7C22, D38.3C22, Dic19.5C22, (C4×D19)⋊3C2, C193(C4○D4), (Q8×C19)⋊3C2, C2.9(C22×D19), SmallGroup(304,34)

Series: Derived Chief Lower central Upper central

C1C38 — D76⋊C2
C1C19C38D38C4×D19 — D76⋊C2
C19C38 — D76⋊C2
C1C2Q8

Generators and relations for D76⋊C2
 G = < a,b,c | a76=b2=c2=1, bab=a-1, cac=a37, cbc=a74b >

38C2
38C2
38C2
19C22
19C22
19C22
19C4
2D19
2D19
2D19
19C2×C4
19D4
19D4
19C2×C4
19D4
19C2×C4
19C4○D4

Smallest permutation representation of D76⋊C2
On 152 points
Generators in S152
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76)(77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152)
(1 76)(2 75)(3 74)(4 73)(5 72)(6 71)(7 70)(8 69)(9 68)(10 67)(11 66)(12 65)(13 64)(14 63)(15 62)(16 61)(17 60)(18 59)(19 58)(20 57)(21 56)(22 55)(23 54)(24 53)(25 52)(26 51)(27 50)(28 49)(29 48)(30 47)(31 46)(32 45)(33 44)(34 43)(35 42)(36 41)(37 40)(38 39)(77 122)(78 121)(79 120)(80 119)(81 118)(82 117)(83 116)(84 115)(85 114)(86 113)(87 112)(88 111)(89 110)(90 109)(91 108)(92 107)(93 106)(94 105)(95 104)(96 103)(97 102)(98 101)(99 100)(123 152)(124 151)(125 150)(126 149)(127 148)(128 147)(129 146)(130 145)(131 144)(132 143)(133 142)(134 141)(135 140)(136 139)(137 138)
(1 119)(2 80)(3 117)(4 78)(5 115)(6 152)(7 113)(8 150)(9 111)(10 148)(11 109)(12 146)(13 107)(14 144)(15 105)(16 142)(17 103)(18 140)(19 101)(20 138)(21 99)(22 136)(23 97)(24 134)(25 95)(26 132)(27 93)(28 130)(29 91)(30 128)(31 89)(32 126)(33 87)(34 124)(35 85)(36 122)(37 83)(38 120)(39 81)(40 118)(41 79)(42 116)(43 77)(44 114)(45 151)(46 112)(47 149)(48 110)(49 147)(50 108)(51 145)(52 106)(53 143)(54 104)(55 141)(56 102)(57 139)(58 100)(59 137)(60 98)(61 135)(62 96)(63 133)(64 94)(65 131)(66 92)(67 129)(68 90)(69 127)(70 88)(71 125)(72 86)(73 123)(74 84)(75 121)(76 82)

G:=sub<Sym(152)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152), (1,76)(2,75)(3,74)(4,73)(5,72)(6,71)(7,70)(8,69)(9,68)(10,67)(11,66)(12,65)(13,64)(14,63)(15,62)(16,61)(17,60)(18,59)(19,58)(20,57)(21,56)(22,55)(23,54)(24,53)(25,52)(26,51)(27,50)(28,49)(29,48)(30,47)(31,46)(32,45)(33,44)(34,43)(35,42)(36,41)(37,40)(38,39)(77,122)(78,121)(79,120)(80,119)(81,118)(82,117)(83,116)(84,115)(85,114)(86,113)(87,112)(88,111)(89,110)(90,109)(91,108)(92,107)(93,106)(94,105)(95,104)(96,103)(97,102)(98,101)(99,100)(123,152)(124,151)(125,150)(126,149)(127,148)(128,147)(129,146)(130,145)(131,144)(132,143)(133,142)(134,141)(135,140)(136,139)(137,138), (1,119)(2,80)(3,117)(4,78)(5,115)(6,152)(7,113)(8,150)(9,111)(10,148)(11,109)(12,146)(13,107)(14,144)(15,105)(16,142)(17,103)(18,140)(19,101)(20,138)(21,99)(22,136)(23,97)(24,134)(25,95)(26,132)(27,93)(28,130)(29,91)(30,128)(31,89)(32,126)(33,87)(34,124)(35,85)(36,122)(37,83)(38,120)(39,81)(40,118)(41,79)(42,116)(43,77)(44,114)(45,151)(46,112)(47,149)(48,110)(49,147)(50,108)(51,145)(52,106)(53,143)(54,104)(55,141)(56,102)(57,139)(58,100)(59,137)(60,98)(61,135)(62,96)(63,133)(64,94)(65,131)(66,92)(67,129)(68,90)(69,127)(70,88)(71,125)(72,86)(73,123)(74,84)(75,121)(76,82)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152), (1,76)(2,75)(3,74)(4,73)(5,72)(6,71)(7,70)(8,69)(9,68)(10,67)(11,66)(12,65)(13,64)(14,63)(15,62)(16,61)(17,60)(18,59)(19,58)(20,57)(21,56)(22,55)(23,54)(24,53)(25,52)(26,51)(27,50)(28,49)(29,48)(30,47)(31,46)(32,45)(33,44)(34,43)(35,42)(36,41)(37,40)(38,39)(77,122)(78,121)(79,120)(80,119)(81,118)(82,117)(83,116)(84,115)(85,114)(86,113)(87,112)(88,111)(89,110)(90,109)(91,108)(92,107)(93,106)(94,105)(95,104)(96,103)(97,102)(98,101)(99,100)(123,152)(124,151)(125,150)(126,149)(127,148)(128,147)(129,146)(130,145)(131,144)(132,143)(133,142)(134,141)(135,140)(136,139)(137,138), (1,119)(2,80)(3,117)(4,78)(5,115)(6,152)(7,113)(8,150)(9,111)(10,148)(11,109)(12,146)(13,107)(14,144)(15,105)(16,142)(17,103)(18,140)(19,101)(20,138)(21,99)(22,136)(23,97)(24,134)(25,95)(26,132)(27,93)(28,130)(29,91)(30,128)(31,89)(32,126)(33,87)(34,124)(35,85)(36,122)(37,83)(38,120)(39,81)(40,118)(41,79)(42,116)(43,77)(44,114)(45,151)(46,112)(47,149)(48,110)(49,147)(50,108)(51,145)(52,106)(53,143)(54,104)(55,141)(56,102)(57,139)(58,100)(59,137)(60,98)(61,135)(62,96)(63,133)(64,94)(65,131)(66,92)(67,129)(68,90)(69,127)(70,88)(71,125)(72,86)(73,123)(74,84)(75,121)(76,82) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76),(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152)], [(1,76),(2,75),(3,74),(4,73),(5,72),(6,71),(7,70),(8,69),(9,68),(10,67),(11,66),(12,65),(13,64),(14,63),(15,62),(16,61),(17,60),(18,59),(19,58),(20,57),(21,56),(22,55),(23,54),(24,53),(25,52),(26,51),(27,50),(28,49),(29,48),(30,47),(31,46),(32,45),(33,44),(34,43),(35,42),(36,41),(37,40),(38,39),(77,122),(78,121),(79,120),(80,119),(81,118),(82,117),(83,116),(84,115),(85,114),(86,113),(87,112),(88,111),(89,110),(90,109),(91,108),(92,107),(93,106),(94,105),(95,104),(96,103),(97,102),(98,101),(99,100),(123,152),(124,151),(125,150),(126,149),(127,148),(128,147),(129,146),(130,145),(131,144),(132,143),(133,142),(134,141),(135,140),(136,139),(137,138)], [(1,119),(2,80),(3,117),(4,78),(5,115),(6,152),(7,113),(8,150),(9,111),(10,148),(11,109),(12,146),(13,107),(14,144),(15,105),(16,142),(17,103),(18,140),(19,101),(20,138),(21,99),(22,136),(23,97),(24,134),(25,95),(26,132),(27,93),(28,130),(29,91),(30,128),(31,89),(32,126),(33,87),(34,124),(35,85),(36,122),(37,83),(38,120),(39,81),(40,118),(41,79),(42,116),(43,77),(44,114),(45,151),(46,112),(47,149),(48,110),(49,147),(50,108),(51,145),(52,106),(53,143),(54,104),(55,141),(56,102),(57,139),(58,100),(59,137),(60,98),(61,135),(62,96),(63,133),(64,94),(65,131),(66,92),(67,129),(68,90),(69,127),(70,88),(71,125),(72,86),(73,123),(74,84),(75,121),(76,82)]])

55 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E19A···19I38A···38I76A···76AA
order122224444419···1938···3876···76
size1138383822219192···22···24···4

55 irreducible representations

dim11112224
type+++++++
imageC1C2C2C2C4○D4D19D38D76⋊C2
kernelD76⋊C2C4×D19D76Q8×C19C19Q8C4C1
# reps133129279

Matrix representation of D76⋊C2 in GL4(𝔽229) generated by

18711700
1128600
0022822
001041
,
18711700
1654200
0022822
0001
,
228000
132100
00107165
0093122
G:=sub<GL(4,GF(229))| [187,112,0,0,117,86,0,0,0,0,228,104,0,0,22,1],[187,165,0,0,117,42,0,0,0,0,228,0,0,0,22,1],[228,132,0,0,0,1,0,0,0,0,107,93,0,0,165,122] >;

D76⋊C2 in GAP, Magma, Sage, TeX

D_{76}\rtimes C_2
% in TeX

G:=Group("D76:C2");
// GroupNames label

G:=SmallGroup(304,34);
// by ID

G=gap.SmallGroup(304,34);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-19,46,182,97,42,7204]);
// Polycyclic

G:=Group<a,b,c|a^76=b^2=c^2=1,b*a*b=a^-1,c*a*c=a^37,c*b*c=a^74*b>;
// generators/relations

Export

Subgroup lattice of D76⋊C2 in TeX

׿
×
𝔽