Copied to
clipboard

G = D4×D19order 304 = 24·19

Direct product of D4 and D19

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D4×D19, C41D38, C76⋊C22, D763C2, C221D38, D382C22, C38.5C23, Dic191C22, C192(C2×D4), (C2×C38)⋊C22, (D4×C19)⋊2C2, (C4×D19)⋊1C2, C19⋊D41C2, (C22×D19)⋊2C2, C2.6(C22×D19), SmallGroup(304,31)

Series: Derived Chief Lower central Upper central

C1C38 — D4×D19
C1C19C38D38C22×D19 — D4×D19
C19C38 — D4×D19
C1C2D4

Generators and relations for D4×D19
 G = < a,b,c,d | a4=b2=c19=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 520 in 54 conjugacy classes, 25 normal (13 characteristic)
C1, C2, C2, C4, C4, C22, C22, C2×C4, D4, D4, C23, C2×D4, C19, D19, D19, C38, C38, Dic19, C76, D38, D38, D38, C2×C38, C4×D19, D76, C19⋊D4, D4×C19, C22×D19, D4×D19
Quotients: C1, C2, C22, D4, C23, C2×D4, D19, D38, C22×D19, D4×D19

Smallest permutation representation of D4×D19
On 76 points
Generators in S76
(1 42 34 71)(2 43 35 72)(3 44 36 73)(4 45 37 74)(5 46 38 75)(6 47 20 76)(7 48 21 58)(8 49 22 59)(9 50 23 60)(10 51 24 61)(11 52 25 62)(12 53 26 63)(13 54 27 64)(14 55 28 65)(15 56 29 66)(16 57 30 67)(17 39 31 68)(18 40 32 69)(19 41 33 70)
(39 68)(40 69)(41 70)(42 71)(43 72)(44 73)(45 74)(46 75)(47 76)(48 58)(49 59)(50 60)(51 61)(52 62)(53 63)(54 64)(55 65)(56 66)(57 67)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19)(20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38)(39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57)(58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76)
(1 33)(2 32)(3 31)(4 30)(5 29)(6 28)(7 27)(8 26)(9 25)(10 24)(11 23)(12 22)(13 21)(14 20)(15 38)(16 37)(17 36)(18 35)(19 34)(39 73)(40 72)(41 71)(42 70)(43 69)(44 68)(45 67)(46 66)(47 65)(48 64)(49 63)(50 62)(51 61)(52 60)(53 59)(54 58)(55 76)(56 75)(57 74)

G:=sub<Sym(76)| (1,42,34,71)(2,43,35,72)(3,44,36,73)(4,45,37,74)(5,46,38,75)(6,47,20,76)(7,48,21,58)(8,49,22,59)(9,50,23,60)(10,51,24,61)(11,52,25,62)(12,53,26,63)(13,54,27,64)(14,55,28,65)(15,56,29,66)(16,57,30,67)(17,39,31,68)(18,40,32,69)(19,41,33,70), (39,68)(40,69)(41,70)(42,71)(43,72)(44,73)(45,74)(46,75)(47,76)(48,58)(49,59)(50,60)(51,61)(52,62)(53,63)(54,64)(55,65)(56,66)(57,67), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57)(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76), (1,33)(2,32)(3,31)(4,30)(5,29)(6,28)(7,27)(8,26)(9,25)(10,24)(11,23)(12,22)(13,21)(14,20)(15,38)(16,37)(17,36)(18,35)(19,34)(39,73)(40,72)(41,71)(42,70)(43,69)(44,68)(45,67)(46,66)(47,65)(48,64)(49,63)(50,62)(51,61)(52,60)(53,59)(54,58)(55,76)(56,75)(57,74)>;

G:=Group( (1,42,34,71)(2,43,35,72)(3,44,36,73)(4,45,37,74)(5,46,38,75)(6,47,20,76)(7,48,21,58)(8,49,22,59)(9,50,23,60)(10,51,24,61)(11,52,25,62)(12,53,26,63)(13,54,27,64)(14,55,28,65)(15,56,29,66)(16,57,30,67)(17,39,31,68)(18,40,32,69)(19,41,33,70), (39,68)(40,69)(41,70)(42,71)(43,72)(44,73)(45,74)(46,75)(47,76)(48,58)(49,59)(50,60)(51,61)(52,62)(53,63)(54,64)(55,65)(56,66)(57,67), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57)(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76), (1,33)(2,32)(3,31)(4,30)(5,29)(6,28)(7,27)(8,26)(9,25)(10,24)(11,23)(12,22)(13,21)(14,20)(15,38)(16,37)(17,36)(18,35)(19,34)(39,73)(40,72)(41,71)(42,70)(43,69)(44,68)(45,67)(46,66)(47,65)(48,64)(49,63)(50,62)(51,61)(52,60)(53,59)(54,58)(55,76)(56,75)(57,74) );

G=PermutationGroup([[(1,42,34,71),(2,43,35,72),(3,44,36,73),(4,45,37,74),(5,46,38,75),(6,47,20,76),(7,48,21,58),(8,49,22,59),(9,50,23,60),(10,51,24,61),(11,52,25,62),(12,53,26,63),(13,54,27,64),(14,55,28,65),(15,56,29,66),(16,57,30,67),(17,39,31,68),(18,40,32,69),(19,41,33,70)], [(39,68),(40,69),(41,70),(42,71),(43,72),(44,73),(45,74),(46,75),(47,76),(48,58),(49,59),(50,60),(51,61),(52,62),(53,63),(54,64),(55,65),(56,66),(57,67)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19),(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38),(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57),(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76)], [(1,33),(2,32),(3,31),(4,30),(5,29),(6,28),(7,27),(8,26),(9,25),(10,24),(11,23),(12,22),(13,21),(14,20),(15,38),(16,37),(17,36),(18,35),(19,34),(39,73),(40,72),(41,71),(42,70),(43,69),(44,68),(45,67),(46,66),(47,65),(48,64),(49,63),(50,62),(51,61),(52,60),(53,59),(54,58),(55,76),(56,75),(57,74)]])

55 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B19A···19I38A···38I38J···38AA76A···76I
order122222224419···1938···3838···3876···76
size1122191938382382···22···24···44···4

55 irreducible representations

dim11111122224
type+++++++++++
imageC1C2C2C2C2C2D4D19D38D38D4×D19
kernelD4×D19C4×D19D76C19⋊D4D4×C19C22×D19D19D4C4C22C1
# reps111212299189

Matrix representation of D4×D19 in GL4(𝔽229) generated by

228000
022800
00162213
002367
,
1000
0100
0010
00192228
,
132100
16119900
0010
0001
,
16413100
2026500
002280
000228
G:=sub<GL(4,GF(229))| [228,0,0,0,0,228,0,0,0,0,162,23,0,0,213,67],[1,0,0,0,0,1,0,0,0,0,1,192,0,0,0,228],[132,161,0,0,1,199,0,0,0,0,1,0,0,0,0,1],[164,202,0,0,131,65,0,0,0,0,228,0,0,0,0,228] >;

D4×D19 in GAP, Magma, Sage, TeX

D_4\times D_{19}
% in TeX

G:=Group("D4xD19");
// GroupNames label

G:=SmallGroup(304,31);
// by ID

G=gap.SmallGroup(304,31);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-19,97,7204]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^19=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽