Extensions 1→N→G→Q→1 with N=2- (1+4) and Q=C10

Direct product G=N×Q with N=2- (1+4) and Q=C10
dρLabelID
C10×2- (1+4)160C10xES-(2,2)320,1633

Semidirect products G=N:Q with N=2- (1+4) and Q=C10
extensionφ:Q→Out NdρLabelID
2- (1+4)⋊C10 = C2×2- (1+4)⋊C5φ: C10/C2C5 ⊆ Out 2- (1+4)64ES-(2,2):C10320,1585
2- (1+4)2C10 = C5×D4.8D4φ: C10/C5C2 ⊆ Out 2- (1+4)804ES-(2,2):2C10320,955
2- (1+4)3C10 = C5×D4○SD16φ: C10/C5C2 ⊆ Out 2- (1+4)804ES-(2,2):3C10320,1579
2- (1+4)4C10 = C5×Q8○D8φ: C10/C5C2 ⊆ Out 2- (1+4)1604ES-(2,2):4C10320,1580
2- (1+4)5C10 = C5×C2.C25φ: trivial image804ES-(2,2):5C10320,1634

Non-split extensions G=N.Q with N=2- (1+4) and Q=C10
extensionφ:Q→Out NdρLabelID
2- (1+4).C10 = 2- (1+4).C10φ: C10/C2C5 ⊆ Out 2- (1+4)644ES-(2,2).C10320,1586
2- (1+4).2C10 = C5×D4.10D4φ: C10/C5C2 ⊆ Out 2- (1+4)804ES-(2,2).2C10320,957

׿
×
𝔽