direct product, metabelian, nilpotent (class 2), monomial, 2-elementary
Aliases: C10×2- (1+4), C10.25C25, C20.91C24, C2.5(C24×C10), C4.14(C23×C10), (C22×Q8)⋊10C10, (Q8×C10)⋊57C22, D4.8(C22×C10), (C5×D4).41C23, Q8.8(C22×C10), (C5×Q8).42C23, (C2×C10).388C24, (C2×C20).690C23, C22.3(C23×C10), (D4×C10).336C22, C23.47(C22×C10), (C22×C10).270C23, (C22×C20).468C22, (Q8×C2×C10)⋊22C2, C4○D4⋊7(C2×C10), (C10×C4○D4)⋊30C2, (C2×C4○D4)⋊14C10, (C2×Q8)⋊17(C2×C10), (C2×D4).82(C2×C10), (C5×C4○D4)⋊27C22, (C22×C4).79(C2×C10), (C2×C4).51(C22×C10), SmallGroup(320,1633)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 834 in 794 conjugacy classes, 754 normal (8 characteristic)
C1, C2, C2 [×2], C2 [×10], C4 [×20], C22, C22 [×10], C22 [×10], C5, C2×C4 [×70], D4 [×40], Q8 [×40], C23 [×5], C10, C10 [×2], C10 [×10], C22×C4 [×15], C2×D4 [×10], C2×Q8 [×50], C4○D4 [×80], C20 [×20], C2×C10, C2×C10 [×10], C2×C10 [×10], C22×Q8 [×5], C2×C4○D4 [×10], 2- (1+4) [×16], C2×C20 [×70], C5×D4 [×40], C5×Q8 [×40], C22×C10 [×5], C2×2- (1+4), C22×C20 [×15], D4×C10 [×10], Q8×C10 [×50], C5×C4○D4 [×80], Q8×C2×C10 [×5], C10×C4○D4 [×10], C5×2- (1+4) [×16], C10×2- (1+4)
Quotients:
C1, C2 [×31], C22 [×155], C5, C23 [×155], C10 [×31], C24 [×31], C2×C10 [×155], 2- (1+4) [×2], C25, C22×C10 [×155], C2×2- (1+4), C23×C10 [×31], C5×2- (1+4) [×2], C24×C10, C10×2- (1+4)
Generators and relations
G = < a,b,c,d,e | a10=b4=c2=1, d2=e2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede-1=b2d >
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 133 30 141)(2 134 21 142)(3 135 22 143)(4 136 23 144)(5 137 24 145)(6 138 25 146)(7 139 26 147)(8 140 27 148)(9 131 28 149)(10 132 29 150)(11 43 160 35)(12 44 151 36)(13 45 152 37)(14 46 153 38)(15 47 154 39)(16 48 155 40)(17 49 156 31)(18 50 157 32)(19 41 158 33)(20 42 159 34)(51 96 69 104)(52 97 70 105)(53 98 61 106)(54 99 62 107)(55 100 63 108)(56 91 64 109)(57 92 65 110)(58 93 66 101)(59 94 67 102)(60 95 68 103)(71 116 89 124)(72 117 90 125)(73 118 81 126)(74 119 82 127)(75 120 83 128)(76 111 84 129)(77 112 85 130)(78 113 86 121)(79 114 87 122)(80 115 88 123)
(1 25)(2 26)(3 27)(4 28)(5 29)(6 30)(7 21)(8 22)(9 23)(10 24)(11 16)(12 17)(13 18)(14 19)(15 20)(31 44)(32 45)(33 46)(34 47)(35 48)(36 49)(37 50)(38 41)(39 42)(40 43)(51 64)(52 65)(53 66)(54 67)(55 68)(56 69)(57 70)(58 61)(59 62)(60 63)(71 84)(72 85)(73 86)(74 87)(75 88)(76 89)(77 90)(78 81)(79 82)(80 83)(91 96)(92 97)(93 98)(94 99)(95 100)(101 106)(102 107)(103 108)(104 109)(105 110)(111 116)(112 117)(113 118)(114 119)(115 120)(121 126)(122 127)(123 128)(124 129)(125 130)(131 136)(132 137)(133 138)(134 139)(135 140)(141 146)(142 147)(143 148)(144 149)(145 150)(151 156)(152 157)(153 158)(154 159)(155 160)
(1 38 30 46)(2 39 21 47)(3 40 22 48)(4 31 23 49)(5 32 24 50)(6 33 25 41)(7 34 26 42)(8 35 27 43)(9 36 28 44)(10 37 29 45)(11 148 160 140)(12 149 151 131)(13 150 152 132)(14 141 153 133)(15 142 154 134)(16 143 155 135)(17 144 156 136)(18 145 157 137)(19 146 158 138)(20 147 159 139)(51 71 69 89)(52 72 70 90)(53 73 61 81)(54 74 62 82)(55 75 63 83)(56 76 64 84)(57 77 65 85)(58 78 66 86)(59 79 67 87)(60 80 68 88)(91 111 109 129)(92 112 110 130)(93 113 101 121)(94 114 102 122)(95 115 103 123)(96 116 104 124)(97 117 105 125)(98 118 106 126)(99 119 107 127)(100 120 108 128)
(1 78 30 86)(2 79 21 87)(3 80 22 88)(4 71 23 89)(5 72 24 90)(6 73 25 81)(7 74 26 82)(8 75 27 83)(9 76 28 84)(10 77 29 85)(11 100 160 108)(12 91 151 109)(13 92 152 110)(14 93 153 101)(15 94 154 102)(16 95 155 103)(17 96 156 104)(18 97 157 105)(19 98 158 106)(20 99 159 107)(31 51 49 69)(32 52 50 70)(33 53 41 61)(34 54 42 62)(35 55 43 63)(36 56 44 64)(37 57 45 65)(38 58 46 66)(39 59 47 67)(40 60 48 68)(111 149 129 131)(112 150 130 132)(113 141 121 133)(114 142 122 134)(115 143 123 135)(116 144 124 136)(117 145 125 137)(118 146 126 138)(119 147 127 139)(120 148 128 140)
G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,133,30,141)(2,134,21,142)(3,135,22,143)(4,136,23,144)(5,137,24,145)(6,138,25,146)(7,139,26,147)(8,140,27,148)(9,131,28,149)(10,132,29,150)(11,43,160,35)(12,44,151,36)(13,45,152,37)(14,46,153,38)(15,47,154,39)(16,48,155,40)(17,49,156,31)(18,50,157,32)(19,41,158,33)(20,42,159,34)(51,96,69,104)(52,97,70,105)(53,98,61,106)(54,99,62,107)(55,100,63,108)(56,91,64,109)(57,92,65,110)(58,93,66,101)(59,94,67,102)(60,95,68,103)(71,116,89,124)(72,117,90,125)(73,118,81,126)(74,119,82,127)(75,120,83,128)(76,111,84,129)(77,112,85,130)(78,113,86,121)(79,114,87,122)(80,115,88,123), (1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,21)(8,22)(9,23)(10,24)(11,16)(12,17)(13,18)(14,19)(15,20)(31,44)(32,45)(33,46)(34,47)(35,48)(36,49)(37,50)(38,41)(39,42)(40,43)(51,64)(52,65)(53,66)(54,67)(55,68)(56,69)(57,70)(58,61)(59,62)(60,63)(71,84)(72,85)(73,86)(74,87)(75,88)(76,89)(77,90)(78,81)(79,82)(80,83)(91,96)(92,97)(93,98)(94,99)(95,100)(101,106)(102,107)(103,108)(104,109)(105,110)(111,116)(112,117)(113,118)(114,119)(115,120)(121,126)(122,127)(123,128)(124,129)(125,130)(131,136)(132,137)(133,138)(134,139)(135,140)(141,146)(142,147)(143,148)(144,149)(145,150)(151,156)(152,157)(153,158)(154,159)(155,160), (1,38,30,46)(2,39,21,47)(3,40,22,48)(4,31,23,49)(5,32,24,50)(6,33,25,41)(7,34,26,42)(8,35,27,43)(9,36,28,44)(10,37,29,45)(11,148,160,140)(12,149,151,131)(13,150,152,132)(14,141,153,133)(15,142,154,134)(16,143,155,135)(17,144,156,136)(18,145,157,137)(19,146,158,138)(20,147,159,139)(51,71,69,89)(52,72,70,90)(53,73,61,81)(54,74,62,82)(55,75,63,83)(56,76,64,84)(57,77,65,85)(58,78,66,86)(59,79,67,87)(60,80,68,88)(91,111,109,129)(92,112,110,130)(93,113,101,121)(94,114,102,122)(95,115,103,123)(96,116,104,124)(97,117,105,125)(98,118,106,126)(99,119,107,127)(100,120,108,128), (1,78,30,86)(2,79,21,87)(3,80,22,88)(4,71,23,89)(5,72,24,90)(6,73,25,81)(7,74,26,82)(8,75,27,83)(9,76,28,84)(10,77,29,85)(11,100,160,108)(12,91,151,109)(13,92,152,110)(14,93,153,101)(15,94,154,102)(16,95,155,103)(17,96,156,104)(18,97,157,105)(19,98,158,106)(20,99,159,107)(31,51,49,69)(32,52,50,70)(33,53,41,61)(34,54,42,62)(35,55,43,63)(36,56,44,64)(37,57,45,65)(38,58,46,66)(39,59,47,67)(40,60,48,68)(111,149,129,131)(112,150,130,132)(113,141,121,133)(114,142,122,134)(115,143,123,135)(116,144,124,136)(117,145,125,137)(118,146,126,138)(119,147,127,139)(120,148,128,140)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,133,30,141)(2,134,21,142)(3,135,22,143)(4,136,23,144)(5,137,24,145)(6,138,25,146)(7,139,26,147)(8,140,27,148)(9,131,28,149)(10,132,29,150)(11,43,160,35)(12,44,151,36)(13,45,152,37)(14,46,153,38)(15,47,154,39)(16,48,155,40)(17,49,156,31)(18,50,157,32)(19,41,158,33)(20,42,159,34)(51,96,69,104)(52,97,70,105)(53,98,61,106)(54,99,62,107)(55,100,63,108)(56,91,64,109)(57,92,65,110)(58,93,66,101)(59,94,67,102)(60,95,68,103)(71,116,89,124)(72,117,90,125)(73,118,81,126)(74,119,82,127)(75,120,83,128)(76,111,84,129)(77,112,85,130)(78,113,86,121)(79,114,87,122)(80,115,88,123), (1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,21)(8,22)(9,23)(10,24)(11,16)(12,17)(13,18)(14,19)(15,20)(31,44)(32,45)(33,46)(34,47)(35,48)(36,49)(37,50)(38,41)(39,42)(40,43)(51,64)(52,65)(53,66)(54,67)(55,68)(56,69)(57,70)(58,61)(59,62)(60,63)(71,84)(72,85)(73,86)(74,87)(75,88)(76,89)(77,90)(78,81)(79,82)(80,83)(91,96)(92,97)(93,98)(94,99)(95,100)(101,106)(102,107)(103,108)(104,109)(105,110)(111,116)(112,117)(113,118)(114,119)(115,120)(121,126)(122,127)(123,128)(124,129)(125,130)(131,136)(132,137)(133,138)(134,139)(135,140)(141,146)(142,147)(143,148)(144,149)(145,150)(151,156)(152,157)(153,158)(154,159)(155,160), (1,38,30,46)(2,39,21,47)(3,40,22,48)(4,31,23,49)(5,32,24,50)(6,33,25,41)(7,34,26,42)(8,35,27,43)(9,36,28,44)(10,37,29,45)(11,148,160,140)(12,149,151,131)(13,150,152,132)(14,141,153,133)(15,142,154,134)(16,143,155,135)(17,144,156,136)(18,145,157,137)(19,146,158,138)(20,147,159,139)(51,71,69,89)(52,72,70,90)(53,73,61,81)(54,74,62,82)(55,75,63,83)(56,76,64,84)(57,77,65,85)(58,78,66,86)(59,79,67,87)(60,80,68,88)(91,111,109,129)(92,112,110,130)(93,113,101,121)(94,114,102,122)(95,115,103,123)(96,116,104,124)(97,117,105,125)(98,118,106,126)(99,119,107,127)(100,120,108,128), (1,78,30,86)(2,79,21,87)(3,80,22,88)(4,71,23,89)(5,72,24,90)(6,73,25,81)(7,74,26,82)(8,75,27,83)(9,76,28,84)(10,77,29,85)(11,100,160,108)(12,91,151,109)(13,92,152,110)(14,93,153,101)(15,94,154,102)(16,95,155,103)(17,96,156,104)(18,97,157,105)(19,98,158,106)(20,99,159,107)(31,51,49,69)(32,52,50,70)(33,53,41,61)(34,54,42,62)(35,55,43,63)(36,56,44,64)(37,57,45,65)(38,58,46,66)(39,59,47,67)(40,60,48,68)(111,149,129,131)(112,150,130,132)(113,141,121,133)(114,142,122,134)(115,143,123,135)(116,144,124,136)(117,145,125,137)(118,146,126,138)(119,147,127,139)(120,148,128,140) );
G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,133,30,141),(2,134,21,142),(3,135,22,143),(4,136,23,144),(5,137,24,145),(6,138,25,146),(7,139,26,147),(8,140,27,148),(9,131,28,149),(10,132,29,150),(11,43,160,35),(12,44,151,36),(13,45,152,37),(14,46,153,38),(15,47,154,39),(16,48,155,40),(17,49,156,31),(18,50,157,32),(19,41,158,33),(20,42,159,34),(51,96,69,104),(52,97,70,105),(53,98,61,106),(54,99,62,107),(55,100,63,108),(56,91,64,109),(57,92,65,110),(58,93,66,101),(59,94,67,102),(60,95,68,103),(71,116,89,124),(72,117,90,125),(73,118,81,126),(74,119,82,127),(75,120,83,128),(76,111,84,129),(77,112,85,130),(78,113,86,121),(79,114,87,122),(80,115,88,123)], [(1,25),(2,26),(3,27),(4,28),(5,29),(6,30),(7,21),(8,22),(9,23),(10,24),(11,16),(12,17),(13,18),(14,19),(15,20),(31,44),(32,45),(33,46),(34,47),(35,48),(36,49),(37,50),(38,41),(39,42),(40,43),(51,64),(52,65),(53,66),(54,67),(55,68),(56,69),(57,70),(58,61),(59,62),(60,63),(71,84),(72,85),(73,86),(74,87),(75,88),(76,89),(77,90),(78,81),(79,82),(80,83),(91,96),(92,97),(93,98),(94,99),(95,100),(101,106),(102,107),(103,108),(104,109),(105,110),(111,116),(112,117),(113,118),(114,119),(115,120),(121,126),(122,127),(123,128),(124,129),(125,130),(131,136),(132,137),(133,138),(134,139),(135,140),(141,146),(142,147),(143,148),(144,149),(145,150),(151,156),(152,157),(153,158),(154,159),(155,160)], [(1,38,30,46),(2,39,21,47),(3,40,22,48),(4,31,23,49),(5,32,24,50),(6,33,25,41),(7,34,26,42),(8,35,27,43),(9,36,28,44),(10,37,29,45),(11,148,160,140),(12,149,151,131),(13,150,152,132),(14,141,153,133),(15,142,154,134),(16,143,155,135),(17,144,156,136),(18,145,157,137),(19,146,158,138),(20,147,159,139),(51,71,69,89),(52,72,70,90),(53,73,61,81),(54,74,62,82),(55,75,63,83),(56,76,64,84),(57,77,65,85),(58,78,66,86),(59,79,67,87),(60,80,68,88),(91,111,109,129),(92,112,110,130),(93,113,101,121),(94,114,102,122),(95,115,103,123),(96,116,104,124),(97,117,105,125),(98,118,106,126),(99,119,107,127),(100,120,108,128)], [(1,78,30,86),(2,79,21,87),(3,80,22,88),(4,71,23,89),(5,72,24,90),(6,73,25,81),(7,74,26,82),(8,75,27,83),(9,76,28,84),(10,77,29,85),(11,100,160,108),(12,91,151,109),(13,92,152,110),(14,93,153,101),(15,94,154,102),(16,95,155,103),(17,96,156,104),(18,97,157,105),(19,98,158,106),(20,99,159,107),(31,51,49,69),(32,52,50,70),(33,53,41,61),(34,54,42,62),(35,55,43,63),(36,56,44,64),(37,57,45,65),(38,58,46,66),(39,59,47,67),(40,60,48,68),(111,149,129,131),(112,150,130,132),(113,141,121,133),(114,142,122,134),(115,143,123,135),(116,144,124,136),(117,145,125,137),(118,146,126,138),(119,147,127,139),(120,148,128,140)])
Matrix representation ►G ⊆ GL5(𝔽41)
40 | 0 | 0 | 0 | 0 |
0 | 31 | 0 | 0 | 0 |
0 | 0 | 31 | 0 | 0 |
0 | 0 | 0 | 31 | 0 |
0 | 0 | 0 | 0 | 31 |
1 | 0 | 0 | 0 | 0 |
0 | 22 | 39 | 11 | 30 |
0 | 15 | 14 | 31 | 21 |
0 | 19 | 19 | 39 | 3 |
0 | 38 | 5 | 33 | 7 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 12 | 30 | 40 | 0 |
0 | 16 | 11 | 0 | 40 |
1 | 0 | 0 | 0 | 0 |
0 | 27 | 39 | 0 | 0 |
0 | 37 | 14 | 0 | 0 |
0 | 28 | 19 | 0 | 40 |
0 | 24 | 5 | 1 | 0 |
40 | 0 | 0 | 0 | 0 |
0 | 10 | 11 | 0 | 0 |
0 | 2 | 31 | 0 | 0 |
0 | 13 | 39 | 26 | 26 |
0 | 20 | 32 | 26 | 15 |
G:=sub<GL(5,GF(41))| [40,0,0,0,0,0,31,0,0,0,0,0,31,0,0,0,0,0,31,0,0,0,0,0,31],[1,0,0,0,0,0,22,15,19,38,0,39,14,19,5,0,11,31,39,33,0,30,21,3,7],[1,0,0,0,0,0,1,0,12,16,0,0,1,30,11,0,0,0,40,0,0,0,0,0,40],[1,0,0,0,0,0,27,37,28,24,0,39,14,19,5,0,0,0,0,1,0,0,0,40,0],[40,0,0,0,0,0,10,2,13,20,0,11,31,39,32,0,0,0,26,26,0,0,0,26,15] >;
170 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2M | 4A | ··· | 4T | 5A | 5B | 5C | 5D | 10A | ··· | 10L | 10M | ··· | 10AZ | 20A | ··· | 20CB |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 5 | 5 | 5 | 5 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 1 | 1 | 1 | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 2 | ··· | 2 |
170 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 4 |
type | + | + | + | + | - | |||||
image | C1 | C2 | C2 | C2 | C5 | C10 | C10 | C10 | 2- (1+4) | C5×2- (1+4) |
kernel | C10×2- (1+4) | Q8×C2×C10 | C10×C4○D4 | C5×2- (1+4) | C2×2- (1+4) | C22×Q8 | C2×C4○D4 | 2- (1+4) | C10 | C2 |
# reps | 1 | 5 | 10 | 16 | 4 | 20 | 40 | 64 | 2 | 8 |
In GAP, Magma, Sage, TeX
C_{10}\times 2_-^{(1+4)}
% in TeX
G:=Group("C10xES-(2,2)");
// GroupNames label
G:=SmallGroup(320,1633);
// by ID
G=gap.SmallGroup(320,1633);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-5,-2,2269,1128,1731,856,4707]);
// Polycyclic
G:=Group<a,b,c,d,e|a^10=b^4=c^2=1,d^2=e^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=b^2*d>;
// generators/relations