direct product, non-abelian, soluble
Aliases: C2×2- (1+4)⋊C5, 2- (1+4)⋊C10, (C2×2- (1+4))⋊C5, C22.1(C24⋊C5), C2.2(C2×C24⋊C5), SmallGroup(320,1585)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2 — 2- (1+4) — 2- (1+4)⋊C5 — C2×2- (1+4)⋊C5 |
2- (1+4) — C2×2- (1+4)⋊C5 |
Subgroups: 499 in 92 conjugacy classes, 9 normal (7 characteristic)
C1, C2, C2 [×2], C2 [×2], C4 [×4], C22, C22 [×4], C5, C2×C4 [×14], D4 [×8], Q8 [×8], C23, C10 [×3], C22×C4 [×3], C2×D4 [×2], C2×Q8 [×10], C4○D4 [×16], C2×C10, C22×Q8, C2×C4○D4 [×2], 2- (1+4), 2- (1+4) [×3], C2×2- (1+4), 2- (1+4)⋊C5, C2×2- (1+4)⋊C5
Quotients:
C1, C2, C5, C10, C24⋊C5, 2- (1+4)⋊C5 [×2], C2×C24⋊C5, C2×2- (1+4)⋊C5
Generators and relations
G = < a,b,c,d,e,f | a2=b4=c2=f5=1, d2=e2=b2, ab=ba, ac=ca, ad=da, ae=ea, af=fa, cbc=b-1, bd=db, be=eb, fbf-1=b2cde, cd=dc, ce=ec, fcf-1=bc, ede-1=b2d, fdf-1=bcd, fef-1=de >
(1 4)(2 3)(5 52)(6 53)(7 54)(8 50)(9 51)(10 20)(11 21)(12 22)(13 23)(14 24)(15 31)(16 32)(17 33)(18 34)(19 30)(25 43)(26 44)(27 40)(28 41)(29 42)(35 45)(36 46)(37 47)(38 48)(39 49)(55 60)(56 61)(57 62)(58 63)(59 64)
(1 49 2 7)(3 54 4 39)(5 14 47 34)(6 40 48 55)(8 56 45 41)(9 11 46 31)(10 43 30 58)(12 13 32 33)(15 51 21 36)(16 17 22 23)(18 52 24 37)(19 63 20 25)(26 62 64 29)(27 38 60 53)(28 50 61 35)(42 44 57 59)
(1 33)(2 13)(3 23)(4 17)(5 41)(6 46)(7 12)(8 34)(9 48)(10 57)(11 40)(14 45)(15 60)(16 39)(18 50)(19 29)(20 62)(21 27)(22 54)(24 35)(25 26)(28 52)(30 42)(31 55)(32 49)(36 53)(37 61)(38 51)(43 44)(47 56)(58 59)(63 64)
(1 43 2 58)(3 63 4 25)(5 46 47 9)(6 56 48 41)(7 10 49 30)(8 40 45 55)(11 14 31 34)(12 57 32 42)(13 59 33 44)(15 18 21 24)(16 29 22 62)(17 26 23 64)(19 54 20 39)(27 35 60 50)(28 53 61 38)(36 37 51 52)
(1 47 2 5)(3 52 4 37)(6 59 48 44)(7 14 49 34)(8 12 45 32)(9 43 46 58)(10 11 30 31)(13 41 33 56)(15 20 21 19)(16 50 22 35)(17 61 23 28)(18 54 24 39)(25 36 63 51)(26 53 64 38)(27 29 60 62)(40 42 55 57)
(5 6 7 8 9)(10 11 12 13 14)(15 16 17 18 19)(20 21 22 23 24)(25 26 27 28 29)(30 31 32 33 34)(35 36 37 38 39)(40 41 42 43 44)(45 46 47 48 49)(50 51 52 53 54)(55 56 57 58 59)(60 61 62 63 64)
G:=sub<Sym(64)| (1,4)(2,3)(5,52)(6,53)(7,54)(8,50)(9,51)(10,20)(11,21)(12,22)(13,23)(14,24)(15,31)(16,32)(17,33)(18,34)(19,30)(25,43)(26,44)(27,40)(28,41)(29,42)(35,45)(36,46)(37,47)(38,48)(39,49)(55,60)(56,61)(57,62)(58,63)(59,64), (1,49,2,7)(3,54,4,39)(5,14,47,34)(6,40,48,55)(8,56,45,41)(9,11,46,31)(10,43,30,58)(12,13,32,33)(15,51,21,36)(16,17,22,23)(18,52,24,37)(19,63,20,25)(26,62,64,29)(27,38,60,53)(28,50,61,35)(42,44,57,59), (1,33)(2,13)(3,23)(4,17)(5,41)(6,46)(7,12)(8,34)(9,48)(10,57)(11,40)(14,45)(15,60)(16,39)(18,50)(19,29)(20,62)(21,27)(22,54)(24,35)(25,26)(28,52)(30,42)(31,55)(32,49)(36,53)(37,61)(38,51)(43,44)(47,56)(58,59)(63,64), (1,43,2,58)(3,63,4,25)(5,46,47,9)(6,56,48,41)(7,10,49,30)(8,40,45,55)(11,14,31,34)(12,57,32,42)(13,59,33,44)(15,18,21,24)(16,29,22,62)(17,26,23,64)(19,54,20,39)(27,35,60,50)(28,53,61,38)(36,37,51,52), (1,47,2,5)(3,52,4,37)(6,59,48,44)(7,14,49,34)(8,12,45,32)(9,43,46,58)(10,11,30,31)(13,41,33,56)(15,20,21,19)(16,50,22,35)(17,61,23,28)(18,54,24,39)(25,36,63,51)(26,53,64,38)(27,29,60,62)(40,42,55,57), (5,6,7,8,9)(10,11,12,13,14)(15,16,17,18,19)(20,21,22,23,24)(25,26,27,28,29)(30,31,32,33,34)(35,36,37,38,39)(40,41,42,43,44)(45,46,47,48,49)(50,51,52,53,54)(55,56,57,58,59)(60,61,62,63,64)>;
G:=Group( (1,4)(2,3)(5,52)(6,53)(7,54)(8,50)(9,51)(10,20)(11,21)(12,22)(13,23)(14,24)(15,31)(16,32)(17,33)(18,34)(19,30)(25,43)(26,44)(27,40)(28,41)(29,42)(35,45)(36,46)(37,47)(38,48)(39,49)(55,60)(56,61)(57,62)(58,63)(59,64), (1,49,2,7)(3,54,4,39)(5,14,47,34)(6,40,48,55)(8,56,45,41)(9,11,46,31)(10,43,30,58)(12,13,32,33)(15,51,21,36)(16,17,22,23)(18,52,24,37)(19,63,20,25)(26,62,64,29)(27,38,60,53)(28,50,61,35)(42,44,57,59), (1,33)(2,13)(3,23)(4,17)(5,41)(6,46)(7,12)(8,34)(9,48)(10,57)(11,40)(14,45)(15,60)(16,39)(18,50)(19,29)(20,62)(21,27)(22,54)(24,35)(25,26)(28,52)(30,42)(31,55)(32,49)(36,53)(37,61)(38,51)(43,44)(47,56)(58,59)(63,64), (1,43,2,58)(3,63,4,25)(5,46,47,9)(6,56,48,41)(7,10,49,30)(8,40,45,55)(11,14,31,34)(12,57,32,42)(13,59,33,44)(15,18,21,24)(16,29,22,62)(17,26,23,64)(19,54,20,39)(27,35,60,50)(28,53,61,38)(36,37,51,52), (1,47,2,5)(3,52,4,37)(6,59,48,44)(7,14,49,34)(8,12,45,32)(9,43,46,58)(10,11,30,31)(13,41,33,56)(15,20,21,19)(16,50,22,35)(17,61,23,28)(18,54,24,39)(25,36,63,51)(26,53,64,38)(27,29,60,62)(40,42,55,57), (5,6,7,8,9)(10,11,12,13,14)(15,16,17,18,19)(20,21,22,23,24)(25,26,27,28,29)(30,31,32,33,34)(35,36,37,38,39)(40,41,42,43,44)(45,46,47,48,49)(50,51,52,53,54)(55,56,57,58,59)(60,61,62,63,64) );
G=PermutationGroup([(1,4),(2,3),(5,52),(6,53),(7,54),(8,50),(9,51),(10,20),(11,21),(12,22),(13,23),(14,24),(15,31),(16,32),(17,33),(18,34),(19,30),(25,43),(26,44),(27,40),(28,41),(29,42),(35,45),(36,46),(37,47),(38,48),(39,49),(55,60),(56,61),(57,62),(58,63),(59,64)], [(1,49,2,7),(3,54,4,39),(5,14,47,34),(6,40,48,55),(8,56,45,41),(9,11,46,31),(10,43,30,58),(12,13,32,33),(15,51,21,36),(16,17,22,23),(18,52,24,37),(19,63,20,25),(26,62,64,29),(27,38,60,53),(28,50,61,35),(42,44,57,59)], [(1,33),(2,13),(3,23),(4,17),(5,41),(6,46),(7,12),(8,34),(9,48),(10,57),(11,40),(14,45),(15,60),(16,39),(18,50),(19,29),(20,62),(21,27),(22,54),(24,35),(25,26),(28,52),(30,42),(31,55),(32,49),(36,53),(37,61),(38,51),(43,44),(47,56),(58,59),(63,64)], [(1,43,2,58),(3,63,4,25),(5,46,47,9),(6,56,48,41),(7,10,49,30),(8,40,45,55),(11,14,31,34),(12,57,32,42),(13,59,33,44),(15,18,21,24),(16,29,22,62),(17,26,23,64),(19,54,20,39),(27,35,60,50),(28,53,61,38),(36,37,51,52)], [(1,47,2,5),(3,52,4,37),(6,59,48,44),(7,14,49,34),(8,12,45,32),(9,43,46,58),(10,11,30,31),(13,41,33,56),(15,20,21,19),(16,50,22,35),(17,61,23,28),(18,54,24,39),(25,36,63,51),(26,53,64,38),(27,29,60,62),(40,42,55,57)], [(5,6,7,8,9),(10,11,12,13,14),(15,16,17,18,19),(20,21,22,23,24),(25,26,27,28,29),(30,31,32,33,34),(35,36,37,38,39),(40,41,42,43,44),(45,46,47,48,49),(50,51,52,53,54),(55,56,57,58,59),(60,61,62,63,64)])
Matrix representation ►G ⊆ GL5(𝔽41)
40 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 40 |
1 | 0 | 0 | 0 | 0 |
0 | 39 | 5 | 24 | 38 |
0 | 5 | 39 | 38 | 24 |
0 | 24 | 38 | 2 | 36 |
0 | 38 | 24 | 36 | 2 |
1 | 0 | 0 | 0 | 0 |
0 | 2 | 20 | 7 | 29 |
0 | 21 | 39 | 12 | 34 |
0 | 7 | 29 | 39 | 21 |
0 | 12 | 34 | 20 | 2 |
1 | 0 | 0 | 0 | 0 |
0 | 20 | 36 | 13 | 30 |
0 | 5 | 21 | 11 | 28 |
0 | 28 | 11 | 20 | 36 |
0 | 30 | 13 | 5 | 21 |
1 | 0 | 0 | 0 | 0 |
0 | 12 | 34 | 20 | 2 |
0 | 7 | 29 | 39 | 21 |
0 | 20 | 2 | 29 | 7 |
0 | 39 | 21 | 34 | 12 |
37 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 7 | 29 | 39 | 21 |
0 | 0 | 0 | 0 | 40 |
0 | 21 | 39 | 12 | 34 |
G:=sub<GL(5,GF(41))| [40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40],[1,0,0,0,0,0,39,5,24,38,0,5,39,38,24,0,24,38,2,36,0,38,24,36,2],[1,0,0,0,0,0,2,21,7,12,0,20,39,29,34,0,7,12,39,20,0,29,34,21,2],[1,0,0,0,0,0,20,5,28,30,0,36,21,11,13,0,13,11,20,5,0,30,28,36,21],[1,0,0,0,0,0,12,7,20,39,0,34,29,2,21,0,20,39,29,34,0,2,21,7,12],[37,0,0,0,0,0,1,7,0,21,0,0,29,0,39,0,0,39,0,12,0,0,21,40,34] >;
Character table of C2×2- (1+4)⋊C5
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 5A | 5B | 5C | 5D | 10A | 10B | 10C | 10D | 10E | 10F | 10G | 10H | 10I | 10J | 10K | 10L | |
size | 1 | 1 | 1 | 1 | 10 | 10 | 10 | 10 | 10 | 10 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ53 | ζ54 | ζ5 | ζ52 | ζ53 | ζ54 | ζ52 | ζ5 | ζ5 | ζ5 | ζ52 | ζ52 | ζ53 | ζ53 | ζ54 | ζ54 | linear of order 5 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ54 | ζ52 | ζ53 | ζ5 | ζ54 | ζ52 | ζ5 | ζ53 | ζ53 | ζ53 | ζ5 | ζ5 | ζ54 | ζ54 | ζ52 | ζ52 | linear of order 5 |
ρ5 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | ζ53 | ζ54 | ζ5 | ζ52 | ζ53 | ζ54 | ζ52 | ζ5 | -ζ5 | -ζ5 | -ζ52 | -ζ52 | -ζ53 | -ζ53 | -ζ54 | -ζ54 | linear of order 10 |
ρ6 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | ζ52 | ζ5 | ζ54 | ζ53 | ζ52 | ζ5 | ζ53 | ζ54 | -ζ54 | -ζ54 | -ζ53 | -ζ53 | -ζ52 | -ζ52 | -ζ5 | -ζ5 | linear of order 10 |
ρ7 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | ζ5 | ζ53 | ζ52 | ζ54 | ζ5 | ζ53 | ζ54 | ζ52 | -ζ52 | -ζ52 | -ζ54 | -ζ54 | -ζ5 | -ζ5 | -ζ53 | -ζ53 | linear of order 10 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ5 | ζ53 | ζ52 | ζ54 | ζ5 | ζ53 | ζ54 | ζ52 | ζ52 | ζ52 | ζ54 | ζ54 | ζ5 | ζ5 | ζ53 | ζ53 | linear of order 5 |
ρ9 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | ζ54 | ζ52 | ζ53 | ζ5 | ζ54 | ζ52 | ζ5 | ζ53 | -ζ53 | -ζ53 | -ζ5 | -ζ5 | -ζ54 | -ζ54 | -ζ52 | -ζ52 | linear of order 10 |
ρ10 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ52 | ζ5 | ζ54 | ζ53 | ζ52 | ζ5 | ζ53 | ζ54 | ζ54 | ζ54 | ζ53 | ζ53 | ζ52 | ζ52 | ζ5 | ζ5 | linear of order 5 |
ρ11 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | symplectic lifted from 2- (1+4)⋊C5, Schur index 2 |
ρ12 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | symplectic lifted from 2- (1+4)⋊C5, Schur index 2 |
ρ13 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ52 | -ζ5 | -ζ54 | -ζ53 | ζ52 | ζ5 | ζ53 | ζ54 | ζ54 | -ζ54 | ζ53 | -ζ53 | ζ52 | -ζ52 | ζ5 | -ζ5 | complex lifted from 2- (1+4)⋊C5 |
ρ14 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ52 | -ζ5 | -ζ54 | -ζ53 | ζ52 | ζ5 | ζ53 | ζ54 | -ζ54 | ζ54 | -ζ53 | ζ53 | -ζ52 | ζ52 | -ζ5 | ζ5 | complex lifted from 2- (1+4)⋊C5 |
ρ15 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ5 | -ζ53 | -ζ52 | -ζ54 | ζ5 | ζ53 | ζ54 | ζ52 | -ζ52 | ζ52 | -ζ54 | ζ54 | -ζ5 | ζ5 | -ζ53 | ζ53 | complex lifted from 2- (1+4)⋊C5 |
ρ16 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ5 | -ζ53 | -ζ52 | -ζ54 | ζ5 | ζ53 | ζ54 | ζ52 | ζ52 | -ζ52 | ζ54 | -ζ54 | ζ5 | -ζ5 | ζ53 | -ζ53 | complex lifted from 2- (1+4)⋊C5 |
ρ17 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ53 | -ζ54 | -ζ5 | -ζ52 | ζ53 | ζ54 | ζ52 | ζ5 | -ζ5 | ζ5 | -ζ52 | ζ52 | -ζ53 | ζ53 | -ζ54 | ζ54 | complex lifted from 2- (1+4)⋊C5 |
ρ18 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ53 | -ζ54 | -ζ5 | -ζ52 | ζ53 | ζ54 | ζ52 | ζ5 | ζ5 | -ζ5 | ζ52 | -ζ52 | ζ53 | -ζ53 | ζ54 | -ζ54 | complex lifted from 2- (1+4)⋊C5 |
ρ19 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ54 | -ζ52 | -ζ53 | -ζ5 | ζ54 | ζ52 | ζ5 | ζ53 | ζ53 | -ζ53 | ζ5 | -ζ5 | ζ54 | -ζ54 | ζ52 | -ζ52 | complex lifted from 2- (1+4)⋊C5 |
ρ20 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ54 | -ζ52 | -ζ53 | -ζ5 | ζ54 | ζ52 | ζ5 | ζ53 | -ζ53 | ζ53 | -ζ5 | ζ5 | -ζ54 | ζ54 | -ζ52 | ζ52 | complex lifted from 2- (1+4)⋊C5 |
ρ21 | 5 | -5 | 5 | -5 | -1 | 1 | -3 | 1 | -1 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×C24⋊C5 |
ρ22 | 5 | 5 | 5 | 5 | 1 | 1 | -3 | 1 | 1 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C24⋊C5 |
ρ23 | 5 | -5 | 5 | -5 | 3 | -3 | 1 | 1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×C24⋊C5 |
ρ24 | 5 | 5 | 5 | 5 | -3 | -3 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C24⋊C5 |
ρ25 | 5 | -5 | 5 | -5 | -1 | 1 | 1 | -3 | 3 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×C24⋊C5 |
ρ26 | 5 | 5 | 5 | 5 | 1 | 1 | 1 | -3 | -3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C24⋊C5 |
In GAP, Magma, Sage, TeX
C_2\times 2_-^{(1+4)}\rtimes C_5
% in TeX
G:=Group("C2xES-(2,2):C5");
// GroupNames label
G:=SmallGroup(320,1585);
// by ID
G=gap.SmallGroup(320,1585);
# by ID
G:=PCGroup([7,-2,-5,-2,2,2,2,-2,849,1270,521,248,1936,718,375,172,3162,1027]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^4=c^2=f^5=1,d^2=e^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,f*b*f^-1=b^2*c*d*e,c*d=d*c,c*e=e*c,f*c*f^-1=b*c,e*d*e^-1=b^2*d,f*d*f^-1=b*c*d,f*e*f^-1=d*e>;
// generators/relations