Copied to
clipboard

?

G = 2- (1+4).C10order 320 = 26·5

The non-split extension by 2- (1+4) of C10 acting via C10/C2=C5

non-abelian, soluble

Aliases: 2- (1+4).C10, C4.(C24⋊C5), C2.C25⋊C5, 2- (1+4)⋊C52C2, C2.3(C2×C24⋊C5), SmallGroup(320,1586)

Series: Derived Chief Lower central Upper central

C1C22- (1+4) — 2- (1+4).C10
C1C22- (1+4)2- (1+4)⋊C5 — 2- (1+4).C10
2- (1+4) — 2- (1+4).C10

Subgroups: 515 in 90 conjugacy classes, 7 normal (all characteristic)
C1, C2, C2 [×3], C4, C4 [×3], C22 [×6], C5, C2×C4 [×12], D4 [×12], Q8 [×4], C23 [×3], C10, C22×C4 [×3], C2×D4 [×9], C2×Q8 [×3], C4○D4 [×16], C20, C2×C4○D4 [×3], 2+ (1+4) [×2], 2- (1+4), 2- (1+4), C2.C25, 2- (1+4)⋊C5, 2- (1+4).C10

Quotients:
C1, C2, C5, C10, C24⋊C5, C2×C24⋊C5, 2- (1+4).C10

Generators and relations
 G = < a,b,c,d,e | a4=b2=1, c2=d2=e10=a2, bab=a-1, ebe-1=ac=ca, ad=da, eae-1=cd, bc=cb, bd=db, dcd-1=a2c, ece-1=a-1bcd, ede-1=a >

Smallest permutation representation
On 64 points
Generators in S64
(1 57 3 47)(2 62 4 52)(5 63 15 53)(6 18 16 8)(7 40 17 30)(9 51 19 61)(10 48 20 58)(11 23 21 13)(12 25 22 35)(14 56 24 46)(26 49 36 59)(27 33 37 43)(28 32 38 42)(29 50 39 60)(31 54 41 64)(34 55 44 45)
(1 13)(2 18)(3 23)(4 8)(5 59)(6 62)(7 38)(9 34)(10 64)(11 47)(12 43)(14 39)(15 49)(16 52)(17 28)(19 44)(20 54)(21 57)(22 33)(24 29)(25 37)(26 53)(27 35)(30 42)(31 58)(32 40)(36 63)(41 48)(45 51)(46 60)(50 56)(55 61)
(1 40 3 30)(2 25 4 35)(5 19 15 9)(6 33 16 43)(7 57 17 47)(8 27 18 37)(10 24 20 14)(11 38 21 28)(12 62 22 52)(13 32 23 42)(26 45 36 55)(29 54 39 64)(31 50 41 60)(34 59 44 49)(46 58 56 48)(51 63 61 53)
(1 53 3 63)(2 58 4 48)(5 47 15 57)(6 64 16 54)(7 19 17 9)(8 41 18 31)(10 52 20 62)(11 49 21 59)(12 24 22 14)(13 26 23 36)(25 46 35 56)(27 50 37 60)(28 34 38 44)(29 33 39 43)(30 51 40 61)(32 55 42 45)
(1 2 3 4)(5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)

G:=sub<Sym(64)| (1,57,3,47)(2,62,4,52)(5,63,15,53)(6,18,16,8)(7,40,17,30)(9,51,19,61)(10,48,20,58)(11,23,21,13)(12,25,22,35)(14,56,24,46)(26,49,36,59)(27,33,37,43)(28,32,38,42)(29,50,39,60)(31,54,41,64)(34,55,44,45), (1,13)(2,18)(3,23)(4,8)(5,59)(6,62)(7,38)(9,34)(10,64)(11,47)(12,43)(14,39)(15,49)(16,52)(17,28)(19,44)(20,54)(21,57)(22,33)(24,29)(25,37)(26,53)(27,35)(30,42)(31,58)(32,40)(36,63)(41,48)(45,51)(46,60)(50,56)(55,61), (1,40,3,30)(2,25,4,35)(5,19,15,9)(6,33,16,43)(7,57,17,47)(8,27,18,37)(10,24,20,14)(11,38,21,28)(12,62,22,52)(13,32,23,42)(26,45,36,55)(29,54,39,64)(31,50,41,60)(34,59,44,49)(46,58,56,48)(51,63,61,53), (1,53,3,63)(2,58,4,48)(5,47,15,57)(6,64,16,54)(7,19,17,9)(8,41,18,31)(10,52,20,62)(11,49,21,59)(12,24,22,14)(13,26,23,36)(25,46,35,56)(27,50,37,60)(28,34,38,44)(29,33,39,43)(30,51,40,61)(32,55,42,45), (1,2,3,4)(5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)>;

G:=Group( (1,57,3,47)(2,62,4,52)(5,63,15,53)(6,18,16,8)(7,40,17,30)(9,51,19,61)(10,48,20,58)(11,23,21,13)(12,25,22,35)(14,56,24,46)(26,49,36,59)(27,33,37,43)(28,32,38,42)(29,50,39,60)(31,54,41,64)(34,55,44,45), (1,13)(2,18)(3,23)(4,8)(5,59)(6,62)(7,38)(9,34)(10,64)(11,47)(12,43)(14,39)(15,49)(16,52)(17,28)(19,44)(20,54)(21,57)(22,33)(24,29)(25,37)(26,53)(27,35)(30,42)(31,58)(32,40)(36,63)(41,48)(45,51)(46,60)(50,56)(55,61), (1,40,3,30)(2,25,4,35)(5,19,15,9)(6,33,16,43)(7,57,17,47)(8,27,18,37)(10,24,20,14)(11,38,21,28)(12,62,22,52)(13,32,23,42)(26,45,36,55)(29,54,39,64)(31,50,41,60)(34,59,44,49)(46,58,56,48)(51,63,61,53), (1,53,3,63)(2,58,4,48)(5,47,15,57)(6,64,16,54)(7,19,17,9)(8,41,18,31)(10,52,20,62)(11,49,21,59)(12,24,22,14)(13,26,23,36)(25,46,35,56)(27,50,37,60)(28,34,38,44)(29,33,39,43)(30,51,40,61)(32,55,42,45), (1,2,3,4)(5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64) );

G=PermutationGroup([(1,57,3,47),(2,62,4,52),(5,63,15,53),(6,18,16,8),(7,40,17,30),(9,51,19,61),(10,48,20,58),(11,23,21,13),(12,25,22,35),(14,56,24,46),(26,49,36,59),(27,33,37,43),(28,32,38,42),(29,50,39,60),(31,54,41,64),(34,55,44,45)], [(1,13),(2,18),(3,23),(4,8),(5,59),(6,62),(7,38),(9,34),(10,64),(11,47),(12,43),(14,39),(15,49),(16,52),(17,28),(19,44),(20,54),(21,57),(22,33),(24,29),(25,37),(26,53),(27,35),(30,42),(31,58),(32,40),(36,63),(41,48),(45,51),(46,60),(50,56),(55,61)], [(1,40,3,30),(2,25,4,35),(5,19,15,9),(6,33,16,43),(7,57,17,47),(8,27,18,37),(10,24,20,14),(11,38,21,28),(12,62,22,52),(13,32,23,42),(26,45,36,55),(29,54,39,64),(31,50,41,60),(34,59,44,49),(46,58,56,48),(51,63,61,53)], [(1,53,3,63),(2,58,4,48),(5,47,15,57),(6,64,16,54),(7,19,17,9),(8,41,18,31),(10,52,20,62),(11,49,21,59),(12,24,22,14),(13,26,23,36),(25,46,35,56),(27,50,37,60),(28,34,38,44),(29,33,39,43),(30,51,40,61),(32,55,42,45)], [(1,2,3,4),(5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)])

Matrix representation G ⊆ GL4(𝔽5) generated by

3031
4224
1130
2222
,
4004
4044
1400
0001
,
2140
2341
2021
2323
,
2431
1424
0401
1414
,
3202
0133
0402
0303
G:=sub<GL(4,GF(5))| [3,4,1,2,0,2,1,2,3,2,3,2,1,4,0,2],[4,4,1,0,0,0,4,0,0,4,0,0,4,4,0,1],[2,2,2,2,1,3,0,3,4,4,2,2,0,1,1,3],[2,1,0,1,4,4,4,4,3,2,0,1,1,4,1,4],[3,0,0,0,2,1,4,3,0,3,0,0,2,3,2,3] >;

Character table of 2- (1+4).C10

 class 12A2B2C2D4A4B4C4D4E5A5B5C5D10A10B10C10D20A20B20C20D20E20F20G20H
 size 111010101110101016161616161616161616161616161616
ρ111111111111111111111111111    trivial
ρ2111-1-1-1-1-11111111111-1-1-1-1-1-1-1-1    linear of order 2
ρ31111111111ζ52ζ54ζ53ζ5ζ52ζ54ζ53ζ5ζ54ζ5ζ52ζ52ζ53ζ53ζ54ζ5    linear of order 5
ρ41111111111ζ54ζ53ζ5ζ52ζ54ζ53ζ5ζ52ζ53ζ52ζ54ζ54ζ5ζ5ζ53ζ52    linear of order 5
ρ51111111111ζ5ζ52ζ54ζ53ζ5ζ52ζ54ζ53ζ52ζ53ζ5ζ5ζ54ζ54ζ52ζ53    linear of order 5
ρ6111-1-1-1-1-111ζ53ζ5ζ52ζ54ζ53ζ5ζ52ζ5455453535252554    linear of order 10
ρ71111111111ζ53ζ5ζ52ζ54ζ53ζ5ζ52ζ54ζ5ζ54ζ53ζ53ζ52ζ52ζ5ζ54    linear of order 5
ρ8111-1-1-1-1-111ζ54ζ53ζ5ζ52ζ54ζ53ζ5ζ5253525454555352    linear of order 10
ρ9111-1-1-1-1-111ζ52ζ54ζ53ζ5ζ52ζ54ζ53ζ554552525353545    linear of order 10
ρ10111-1-1-1-1-111ζ5ζ52ζ54ζ53ζ5ζ52ζ54ζ5352535554545253    linear of order 10
ρ114-40004i4i000-1-1-1-11111ii-ii-ii-i-i    complex faithful
ρ124-40004i4i000-1-1-1-11111-i-ii-ii-iii    complex faithful
ρ134-40004i4i0005254535ζ52ζ54ζ53ζ5ζ4ζ54ζ4ζ5ζ43ζ52ζ4ζ52ζ43ζ53ζ4ζ53ζ43ζ54ζ43ζ5    complex faithful
ρ144-40004i4i0005453552ζ54ζ53ζ5ζ52ζ4ζ53ζ4ζ52ζ43ζ54ζ4ζ54ζ43ζ5ζ4ζ5ζ43ζ53ζ43ζ52    complex faithful
ρ154-40004i4i0005355254ζ53ζ5ζ52ζ54ζ43ζ5ζ43ζ54ζ4ζ53ζ43ζ53ζ4ζ52ζ43ζ52ζ4ζ5ζ4ζ54    complex faithful
ρ164-40004i4i0005453552ζ54ζ53ζ5ζ52ζ43ζ53ζ43ζ52ζ4ζ54ζ43ζ54ζ4ζ5ζ43ζ5ζ4ζ53ζ4ζ52    complex faithful
ρ174-40004i4i0005525453ζ5ζ52ζ54ζ53ζ43ζ52ζ43ζ53ζ4ζ5ζ43ζ5ζ4ζ54ζ43ζ54ζ4ζ52ζ4ζ53    complex faithful
ρ184-40004i4i0005525453ζ5ζ52ζ54ζ53ζ4ζ52ζ4ζ53ζ43ζ5ζ4ζ5ζ43ζ54ζ4ζ54ζ43ζ52ζ43ζ53    complex faithful
ρ194-40004i4i0005355254ζ53ζ5ζ52ζ54ζ4ζ5ζ4ζ54ζ43ζ53ζ4ζ53ζ43ζ52ζ4ζ52ζ43ζ5ζ43ζ54    complex faithful
ρ204-40004i4i0005254535ζ52ζ54ζ53ζ5ζ43ζ54ζ43ζ5ζ4ζ52ζ43ζ52ζ4ζ53ζ43ζ53ζ4ζ54ζ4ζ5    complex faithful
ρ21551-13-5-5-1-310000000000000000    orthogonal lifted from C2×C24⋊C5
ρ22551-315511-30000000000000000    orthogonal lifted from C24⋊C5
ρ2355-31155-3110000000000000000    orthogonal lifted from C24⋊C5
ρ245513-1-5-5-11-30000000000000000    orthogonal lifted from C2×C24⋊C5
ρ2555-3-1-1-5-53110000000000000000    orthogonal lifted from C2×C24⋊C5
ρ265511-3551-310000000000000000    orthogonal lifted from C24⋊C5

In GAP, Magma, Sage, TeX

2_-^{(1+4)}.C_{10}
% in TeX

G:=Group("ES-(2,2).C10");
// GroupNames label

G:=SmallGroup(320,1586);
// by ID

G=gap.SmallGroup(320,1586);
# by ID

G:=PCGroup([7,-2,-5,-2,2,2,2,-2,1120,849,1270,521,248,1936,718,375,172,3162,1027]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^2=1,c^2=d^2=e^10=a^2,b*a*b=a^-1,e*b*e^-1=a*c=c*a,a*d=d*a,e*a*e^-1=c*d,b*c=c*b,b*d=d*b,d*c*d^-1=a^2*c,e*c*e^-1=a^-1*b*c*d,e*d*e^-1=a>;
// generators/relations

׿
×
𝔽