extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×C5⋊2C8)⋊1C4 = C42⋊1Dic5 | φ: C4/C1 → C4 ⊆ Out C2×C5⋊2C8 | 80 | 4 | (C2xC5:2C8):1C4 | 320,89 |
(C2×C5⋊2C8)⋊2C4 = C20.60(C4⋊C4) | φ: C4/C1 → C4 ⊆ Out C2×C5⋊2C8 | 80 | 4 | (C2xC5:2C8):2C4 | 320,91 |
(C2×C5⋊2C8)⋊3C4 = M4(2)⋊4Dic5 | φ: C4/C1 → C4 ⊆ Out C2×C5⋊2C8 | 80 | 4 | (C2xC5:2C8):3C4 | 320,117 |
(C2×C5⋊2C8)⋊4C4 = (C2×C8)⋊F5 | φ: C4/C1 → C4 ⊆ Out C2×C5⋊2C8 | 80 | 4 | (C2xC5:2C8):4C4 | 320,232 |
(C2×C5⋊2C8)⋊5C4 = C20.24C42 | φ: C4/C1 → C4 ⊆ Out C2×C5⋊2C8 | 80 | 4 | (C2xC5:2C8):5C4 | 320,233 |
(C2×C5⋊2C8)⋊6C4 = C20.31C42 | φ: C4/C2 → C2 ⊆ Out C2×C5⋊2C8 | 320 | | (C2xC5:2C8):6C4 | 320,87 |
(C2×C5⋊2C8)⋊7C4 = C2×C10.D8 | φ: C4/C2 → C2 ⊆ Out C2×C5⋊2C8 | 320 | | (C2xC5:2C8):7C4 | 320,589 |
(C2×C5⋊2C8)⋊8C4 = C2×C20.Q8 | φ: C4/C2 → C2 ⊆ Out C2×C5⋊2C8 | 320 | | (C2xC5:2C8):8C4 | 320,590 |
(C2×C5⋊2C8)⋊9C4 = C20.35C42 | φ: C4/C2 → C2 ⊆ Out C2×C5⋊2C8 | 160 | | (C2xC5:2C8):9C4 | 320,624 |
(C2×C5⋊2C8)⋊10C4 = C20.76(C4⋊C4) | φ: C4/C2 → C2 ⊆ Out C2×C5⋊2C8 | 160 | | (C2xC5:2C8):10C4 | 320,625 |
(C2×C5⋊2C8)⋊11C4 = C20.37C42 | φ: C4/C2 → C2 ⊆ Out C2×C5⋊2C8 | 160 | | (C2xC5:2C8):11C4 | 320,749 |
(C2×C5⋊2C8)⋊12C4 = (C2×C20)⋊8C8 | φ: C4/C2 → C2 ⊆ Out C2×C5⋊2C8 | 320 | | (C2xC5:2C8):12C4 | 320,82 |
(C2×C5⋊2C8)⋊13C4 = (C2×C40)⋊15C4 | φ: C4/C2 → C2 ⊆ Out C2×C5⋊2C8 | 320 | | (C2xC5:2C8):13C4 | 320,108 |
(C2×C5⋊2C8)⋊14C4 = C2×C42.D5 | φ: C4/C2 → C2 ⊆ Out C2×C5⋊2C8 | 320 | | (C2xC5:2C8):14C4 | 320,548 |
(C2×C5⋊2C8)⋊15C4 = C2×C40⋊8C4 | φ: C4/C2 → C2 ⊆ Out C2×C5⋊2C8 | 320 | | (C2xC5:2C8):15C4 | 320,727 |
(C2×C5⋊2C8)⋊16C4 = D10.10D8 | φ: C4/C2 → C2 ⊆ Out C2×C5⋊2C8 | 80 | | (C2xC5:2C8):16C4 | 320,231 |
(C2×C5⋊2C8)⋊17C4 = C2×C40⋊C4 | φ: C4/C2 → C2 ⊆ Out C2×C5⋊2C8 | 80 | | (C2xC5:2C8):17C4 | 320,1057 |
(C2×C5⋊2C8)⋊18C4 = C2×D5.D8 | φ: C4/C2 → C2 ⊆ Out C2×C5⋊2C8 | 80 | | (C2xC5:2C8):18C4 | 320,1058 |
(C2×C5⋊2C8)⋊19C4 = C20.12C42 | φ: C4/C2 → C2 ⊆ Out C2×C5⋊2C8 | 80 | 4 | (C2xC5:2C8):19C4 | 320,1056 |
(C2×C5⋊2C8)⋊20C4 = (C2×C8)⋊6F5 | φ: C4/C2 → C2 ⊆ Out C2×C5⋊2C8 | 80 | 4 | (C2xC5:2C8):20C4 | 320,1059 |
(C2×C5⋊2C8)⋊21C4 = D10.3M4(2) | φ: C4/C2 → C2 ⊆ Out C2×C5⋊2C8 | 80 | | (C2xC5:2C8):21C4 | 320,230 |
(C2×C5⋊2C8)⋊22C4 = C2×C8×F5 | φ: C4/C2 → C2 ⊆ Out C2×C5⋊2C8 | 80 | | (C2xC5:2C8):22C4 | 320,1054 |
(C2×C5⋊2C8)⋊23C4 = C2×C8⋊F5 | φ: C4/C2 → C2 ⊆ Out C2×C5⋊2C8 | 80 | | (C2xC5:2C8):23C4 | 320,1055 |
(C2×C5⋊2C8)⋊24C4 = C2×C8×Dic5 | φ: trivial image | 320 | | (C2xC5:2C8):24C4 | 320,725 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×C5⋊2C8).1C4 = C80⋊C4 | φ: C4/C1 → C4 ⊆ Out C2×C5⋊2C8 | 80 | 4 | (C2xC5:2C8).1C4 | 320,70 |
(C2×C5⋊2C8).2C4 = C8.25D20 | φ: C4/C1 → C4 ⊆ Out C2×C5⋊2C8 | 80 | 4 | (C2xC5:2C8).2C4 | 320,72 |
(C2×C5⋊2C8).3C4 = C20.51C42 | φ: C4/C1 → C4 ⊆ Out C2×C5⋊2C8 | 80 | 4 | (C2xC5:2C8).3C4 | 320,118 |
(C2×C5⋊2C8).4C4 = C42.3F5 | φ: C4/C1 → C4 ⊆ Out C2×C5⋊2C8 | 80 | 4 | (C2xC5:2C8).4C4 | 320,198 |
(C2×C5⋊2C8).5C4 = C20.25C42 | φ: C4/C1 → C4 ⊆ Out C2×C5⋊2C8 | 80 | 4 | (C2xC5:2C8).5C4 | 320,235 |
(C2×C5⋊2C8).6C4 = C20.29M4(2) | φ: C4/C1 → C4 ⊆ Out C2×C5⋊2C8 | 80 | 4 | (C2xC5:2C8).6C4 | 320,250 |
(C2×C5⋊2C8).7C4 = C20.53D8 | φ: C4/C2 → C2 ⊆ Out C2×C5⋊2C8 | 320 | | (C2xC5:2C8).7C4 | 320,37 |
(C2×C5⋊2C8).8C4 = C20.39SD16 | φ: C4/C2 → C2 ⊆ Out C2×C5⋊2C8 | 320 | | (C2xC5:2C8).8C4 | 320,38 |
(C2×C5⋊2C8).9C4 = C40.9Q8 | φ: C4/C2 → C2 ⊆ Out C2×C5⋊2C8 | 80 | 4 | (C2xC5:2C8).9C4 | 320,69 |
(C2×C5⋊2C8).10C4 = C20.34C42 | φ: C4/C2 → C2 ⊆ Out C2×C5⋊2C8 | 160 | | (C2xC5:2C8).10C4 | 320,116 |
(C2×C5⋊2C8).11C4 = D5×M5(2) | φ: C4/C2 → C2 ⊆ Out C2×C5⋊2C8 | 80 | 4 | (C2xC5:2C8).11C4 | 320,533 |
(C2×C5⋊2C8).12C4 = C2×C20.53D4 | φ: C4/C2 → C2 ⊆ Out C2×C5⋊2C8 | 160 | | (C2xC5:2C8).12C4 | 320,750 |
(C2×C5⋊2C8).13C4 = C42.279D10 | φ: C4/C2 → C2 ⊆ Out C2×C5⋊2C8 | 320 | | (C2xC5:2C8).13C4 | 320,12 |
(C2×C5⋊2C8).14C4 = C40⋊8C8 | φ: C4/C2 → C2 ⊆ Out C2×C5⋊2C8 | 320 | | (C2xC5:2C8).14C4 | 320,13 |
(C2×C5⋊2C8).15C4 = C40.88D4 | φ: C4/C2 → C2 ⊆ Out C2×C5⋊2C8 | 320 | | (C2xC5:2C8).15C4 | 320,59 |
(C2×C5⋊2C8).16C4 = C80⋊17C4 | φ: C4/C2 → C2 ⊆ Out C2×C5⋊2C8 | 320 | | (C2xC5:2C8).16C4 | 320,60 |
(C2×C5⋊2C8).17C4 = D10⋊1C16 | φ: C4/C2 → C2 ⊆ Out C2×C5⋊2C8 | 160 | | (C2xC5:2C8).17C4 | 320,65 |
(C2×C5⋊2C8).18C4 = C2×C80⋊C2 | φ: C4/C2 → C2 ⊆ Out C2×C5⋊2C8 | 160 | | (C2xC5:2C8).18C4 | 320,527 |
(C2×C5⋊2C8).19C4 = C40⋊2C8 | φ: C4/C2 → C2 ⊆ Out C2×C5⋊2C8 | 320 | | (C2xC5:2C8).19C4 | 320,219 |
(C2×C5⋊2C8).20C4 = C40⋊1C8 | φ: C4/C2 → C2 ⊆ Out C2×C5⋊2C8 | 320 | | (C2xC5:2C8).20C4 | 320,220 |
(C2×C5⋊2C8).21C4 = C20.26M4(2) | φ: C4/C2 → C2 ⊆ Out C2×C5⋊2C8 | 320 | | (C2xC5:2C8).21C4 | 320,221 |
(C2×C5⋊2C8).22C4 = Dic5.13D8 | φ: C4/C2 → C2 ⊆ Out C2×C5⋊2C8 | 320 | | (C2xC5:2C8).22C4 | 320,222 |
(C2×C5⋊2C8).23C4 = C20.10C42 | φ: C4/C2 → C2 ⊆ Out C2×C5⋊2C8 | 160 | | (C2xC5:2C8).23C4 | 320,234 |
(C2×C5⋊2C8).24C4 = C2×C40.C4 | φ: C4/C2 → C2 ⊆ Out C2×C5⋊2C8 | 160 | | (C2xC5:2C8).24C4 | 320,1060 |
(C2×C5⋊2C8).25C4 = C2×D10.Q8 | φ: C4/C2 → C2 ⊆ Out C2×C5⋊2C8 | 160 | | (C2xC5:2C8).25C4 | 320,1061 |
(C2×C5⋊2C8).26C4 = C42.9F5 | φ: C4/C2 → C2 ⊆ Out C2×C5⋊2C8 | 80 | 4 | (C2xC5:2C8).26C4 | 320,199 |
(C2×C5⋊2C8).27C4 = (C8×D5).C4 | φ: C4/C2 → C2 ⊆ Out C2×C5⋊2C8 | 80 | 4 | (C2xC5:2C8).27C4 | 320,1062 |
(C2×C5⋊2C8).28C4 = C2×C20.C8 | φ: C4/C2 → C2 ⊆ Out C2×C5⋊2C8 | 160 | | (C2xC5:2C8).28C4 | 320,1081 |
(C2×C5⋊2C8).29C4 = C4×C5⋊C16 | φ: C4/C2 → C2 ⊆ Out C2×C5⋊2C8 | 320 | | (C2xC5:2C8).29C4 | 320,195 |
(C2×C5⋊2C8).30C4 = C20⋊C16 | φ: C4/C2 → C2 ⊆ Out C2×C5⋊2C8 | 320 | | (C2xC5:2C8).30C4 | 320,196 |
(C2×C5⋊2C8).31C4 = C42.4F5 | φ: C4/C2 → C2 ⊆ Out C2×C5⋊2C8 | 320 | | (C2xC5:2C8).31C4 | 320,197 |
(C2×C5⋊2C8).32C4 = C8×C5⋊C8 | φ: C4/C2 → C2 ⊆ Out C2×C5⋊2C8 | 320 | | (C2xC5:2C8).32C4 | 320,216 |
(C2×C5⋊2C8).33C4 = C40⋊C8 | φ: C4/C2 → C2 ⊆ Out C2×C5⋊2C8 | 320 | | (C2xC5:2C8).33C4 | 320,217 |
(C2×C5⋊2C8).34C4 = C20.31M4(2) | φ: C4/C2 → C2 ⊆ Out C2×C5⋊2C8 | 320 | | (C2xC5:2C8).34C4 | 320,218 |
(C2×C5⋊2C8).35C4 = C10.6M5(2) | φ: C4/C2 → C2 ⊆ Out C2×C5⋊2C8 | 160 | | (C2xC5:2C8).35C4 | 320,249 |
(C2×C5⋊2C8).36C4 = C22×C5⋊C16 | φ: C4/C2 → C2 ⊆ Out C2×C5⋊2C8 | 320 | | (C2xC5:2C8).36C4 | 320,1080 |
(C2×C5⋊2C8).37C4 = C8×C5⋊2C8 | φ: trivial image | 320 | | (C2xC5:2C8).37C4 | 320,11 |
(C2×C5⋊2C8).38C4 = C16×Dic5 | φ: trivial image | 320 | | (C2xC5:2C8).38C4 | 320,58 |
(C2×C5⋊2C8).39C4 = D5×C2×C16 | φ: trivial image | 160 | | (C2xC5:2C8).39C4 | 320,526 |