# Extensions 1→N→G→Q→1 with N=C2×C5⋊2C8 and Q=C4

Direct product G=N×Q with N=C2×C52C8 and Q=C4
dρLabelID
C2×C4×C52C8320C2xC4xC5:2C8320,547

Semidirect products G=N:Q with N=C2×C52C8 and Q=C4
extensionφ:Q→Out NdρLabelID
(C2×C52C8)⋊1C4 = C421Dic5φ: C4/C1C4 ⊆ Out C2×C52C8804(C2xC5:2C8):1C4320,89
(C2×C52C8)⋊2C4 = C20.60(C4⋊C4)φ: C4/C1C4 ⊆ Out C2×C52C8804(C2xC5:2C8):2C4320,91
(C2×C52C8)⋊3C4 = M4(2)⋊4Dic5φ: C4/C1C4 ⊆ Out C2×C52C8804(C2xC5:2C8):3C4320,117
(C2×C52C8)⋊4C4 = (C2×C8)⋊F5φ: C4/C1C4 ⊆ Out C2×C52C8804(C2xC5:2C8):4C4320,232
(C2×C52C8)⋊5C4 = C20.24C42φ: C4/C1C4 ⊆ Out C2×C52C8804(C2xC5:2C8):5C4320,233
(C2×C52C8)⋊6C4 = C20.31C42φ: C4/C2C2 ⊆ Out C2×C52C8320(C2xC5:2C8):6C4320,87
(C2×C52C8)⋊7C4 = C2×C10.D8φ: C4/C2C2 ⊆ Out C2×C52C8320(C2xC5:2C8):7C4320,589
(C2×C52C8)⋊8C4 = C2×C20.Q8φ: C4/C2C2 ⊆ Out C2×C52C8320(C2xC5:2C8):8C4320,590
(C2×C52C8)⋊9C4 = C20.35C42φ: C4/C2C2 ⊆ Out C2×C52C8160(C2xC5:2C8):9C4320,624
(C2×C52C8)⋊10C4 = C20.76(C4⋊C4)φ: C4/C2C2 ⊆ Out C2×C52C8160(C2xC5:2C8):10C4320,625
(C2×C52C8)⋊11C4 = C20.37C42φ: C4/C2C2 ⊆ Out C2×C52C8160(C2xC5:2C8):11C4320,749
(C2×C52C8)⋊12C4 = (C2×C20)⋊8C8φ: C4/C2C2 ⊆ Out C2×C52C8320(C2xC5:2C8):12C4320,82
(C2×C52C8)⋊13C4 = (C2×C40)⋊15C4φ: C4/C2C2 ⊆ Out C2×C52C8320(C2xC5:2C8):13C4320,108
(C2×C52C8)⋊14C4 = C2×C42.D5φ: C4/C2C2 ⊆ Out C2×C52C8320(C2xC5:2C8):14C4320,548
(C2×C52C8)⋊15C4 = C2×C408C4φ: C4/C2C2 ⊆ Out C2×C52C8320(C2xC5:2C8):15C4320,727
(C2×C52C8)⋊16C4 = D10.10D8φ: C4/C2C2 ⊆ Out C2×C52C880(C2xC5:2C8):16C4320,231
(C2×C52C8)⋊17C4 = C2×C40⋊C4φ: C4/C2C2 ⊆ Out C2×C52C880(C2xC5:2C8):17C4320,1057
(C2×C52C8)⋊18C4 = C2×D5.D8φ: C4/C2C2 ⊆ Out C2×C52C880(C2xC5:2C8):18C4320,1058
(C2×C52C8)⋊19C4 = C20.12C42φ: C4/C2C2 ⊆ Out C2×C52C8804(C2xC5:2C8):19C4320,1056
(C2×C52C8)⋊20C4 = (C2×C8)⋊6F5φ: C4/C2C2 ⊆ Out C2×C52C8804(C2xC5:2C8):20C4320,1059
(C2×C52C8)⋊21C4 = D10.3M4(2)φ: C4/C2C2 ⊆ Out C2×C52C880(C2xC5:2C8):21C4320,230
(C2×C52C8)⋊22C4 = C2×C8×F5φ: C4/C2C2 ⊆ Out C2×C52C880(C2xC5:2C8):22C4320,1054
(C2×C52C8)⋊23C4 = C2×C8⋊F5φ: C4/C2C2 ⊆ Out C2×C52C880(C2xC5:2C8):23C4320,1055
(C2×C52C8)⋊24C4 = C2×C8×Dic5φ: trivial image320(C2xC5:2C8):24C4320,725

Non-split extensions G=N.Q with N=C2×C52C8 and Q=C4
extensionφ:Q→Out NdρLabelID
(C2×C52C8).1C4 = C80⋊C4φ: C4/C1C4 ⊆ Out C2×C52C8804(C2xC5:2C8).1C4320,70
(C2×C52C8).2C4 = C8.25D20φ: C4/C1C4 ⊆ Out C2×C52C8804(C2xC5:2C8).2C4320,72
(C2×C52C8).3C4 = C20.51C42φ: C4/C1C4 ⊆ Out C2×C52C8804(C2xC5:2C8).3C4320,118
(C2×C52C8).4C4 = C42.3F5φ: C4/C1C4 ⊆ Out C2×C52C8804(C2xC5:2C8).4C4320,198
(C2×C52C8).5C4 = C20.25C42φ: C4/C1C4 ⊆ Out C2×C52C8804(C2xC5:2C8).5C4320,235
(C2×C52C8).6C4 = C20.29M4(2)φ: C4/C1C4 ⊆ Out C2×C52C8804(C2xC5:2C8).6C4320,250
(C2×C52C8).7C4 = C20.53D8φ: C4/C2C2 ⊆ Out C2×C52C8320(C2xC5:2C8).7C4320,37
(C2×C52C8).8C4 = C20.39SD16φ: C4/C2C2 ⊆ Out C2×C52C8320(C2xC5:2C8).8C4320,38
(C2×C52C8).9C4 = C40.9Q8φ: C4/C2C2 ⊆ Out C2×C52C8804(C2xC5:2C8).9C4320,69
(C2×C52C8).10C4 = C20.34C42φ: C4/C2C2 ⊆ Out C2×C52C8160(C2xC5:2C8).10C4320,116
(C2×C52C8).11C4 = D5×M5(2)φ: C4/C2C2 ⊆ Out C2×C52C8804(C2xC5:2C8).11C4320,533
(C2×C52C8).12C4 = C2×C20.53D4φ: C4/C2C2 ⊆ Out C2×C52C8160(C2xC5:2C8).12C4320,750
(C2×C52C8).13C4 = C42.279D10φ: C4/C2C2 ⊆ Out C2×C52C8320(C2xC5:2C8).13C4320,12
(C2×C52C8).14C4 = C408C8φ: C4/C2C2 ⊆ Out C2×C52C8320(C2xC5:2C8).14C4320,13
(C2×C52C8).15C4 = C40.88D4φ: C4/C2C2 ⊆ Out C2×C52C8320(C2xC5:2C8).15C4320,59
(C2×C52C8).16C4 = C8017C4φ: C4/C2C2 ⊆ Out C2×C52C8320(C2xC5:2C8).16C4320,60
(C2×C52C8).17C4 = D101C16φ: C4/C2C2 ⊆ Out C2×C52C8160(C2xC5:2C8).17C4320,65
(C2×C52C8).18C4 = C2×C80⋊C2φ: C4/C2C2 ⊆ Out C2×C52C8160(C2xC5:2C8).18C4320,527
(C2×C52C8).19C4 = C402C8φ: C4/C2C2 ⊆ Out C2×C52C8320(C2xC5:2C8).19C4320,219
(C2×C52C8).20C4 = C401C8φ: C4/C2C2 ⊆ Out C2×C52C8320(C2xC5:2C8).20C4320,220
(C2×C52C8).21C4 = C20.26M4(2)φ: C4/C2C2 ⊆ Out C2×C52C8320(C2xC5:2C8).21C4320,221
(C2×C52C8).22C4 = Dic5.13D8φ: C4/C2C2 ⊆ Out C2×C52C8320(C2xC5:2C8).22C4320,222
(C2×C52C8).23C4 = C20.10C42φ: C4/C2C2 ⊆ Out C2×C52C8160(C2xC5:2C8).23C4320,234
(C2×C52C8).24C4 = C2×C40.C4φ: C4/C2C2 ⊆ Out C2×C52C8160(C2xC5:2C8).24C4320,1060
(C2×C52C8).25C4 = C2×D10.Q8φ: C4/C2C2 ⊆ Out C2×C52C8160(C2xC5:2C8).25C4320,1061
(C2×C52C8).26C4 = C42.9F5φ: C4/C2C2 ⊆ Out C2×C52C8804(C2xC5:2C8).26C4320,199
(C2×C52C8).27C4 = (C8×D5).C4φ: C4/C2C2 ⊆ Out C2×C52C8804(C2xC5:2C8).27C4320,1062
(C2×C52C8).28C4 = C2×C20.C8φ: C4/C2C2 ⊆ Out C2×C52C8160(C2xC5:2C8).28C4320,1081
(C2×C52C8).29C4 = C4×C5⋊C16φ: C4/C2C2 ⊆ Out C2×C52C8320(C2xC5:2C8).29C4320,195
(C2×C52C8).30C4 = C20⋊C16φ: C4/C2C2 ⊆ Out C2×C52C8320(C2xC5:2C8).30C4320,196
(C2×C52C8).31C4 = C42.4F5φ: C4/C2C2 ⊆ Out C2×C52C8320(C2xC5:2C8).31C4320,197
(C2×C52C8).32C4 = C8×C5⋊C8φ: C4/C2C2 ⊆ Out C2×C52C8320(C2xC5:2C8).32C4320,216
(C2×C52C8).33C4 = C40⋊C8φ: C4/C2C2 ⊆ Out C2×C52C8320(C2xC5:2C8).33C4320,217
(C2×C52C8).34C4 = C20.31M4(2)φ: C4/C2C2 ⊆ Out C2×C52C8320(C2xC5:2C8).34C4320,218
(C2×C52C8).35C4 = C10.6M5(2)φ: C4/C2C2 ⊆ Out C2×C52C8160(C2xC5:2C8).35C4320,249
(C2×C52C8).36C4 = C22×C5⋊C16φ: C4/C2C2 ⊆ Out C2×C52C8320(C2xC5:2C8).36C4320,1080
(C2×C52C8).37C4 = C8×C52C8φ: trivial image320(C2xC5:2C8).37C4320,11
(C2×C52C8).38C4 = C16×Dic5φ: trivial image320(C2xC5:2C8).38C4320,58
(C2×C52C8).39C4 = D5×C2×C16φ: trivial image160(C2xC5:2C8).39C4320,526

׿
×
𝔽