Copied to
clipboard

G = C8.25D20order 320 = 26·5

11st non-split extension by C8 of D20 acting via D20/D10=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C8.25D20, C40.46D4, M5(2)⋊3D5, C20.20M4(2), C53(C23.C8), C22.5(C8×D5), (C2×C8).152D10, C8.46(C5⋊D4), (C5×M5(2))⋊7C2, (C2×Dic5).1C8, C20.4C810C2, (C22×D5).1C8, C4.10(C8⋊D5), C10.24(C22⋊C8), (C2×C40).220C22, C2.10(D101C8), C4.42(D10⋊C4), C20.104(C22⋊C4), (C2×C4×D5).1C4, (C2×C52C8).2C4, (C2×C10).18(C2×C8), (C2×C4).137(C4×D5), (C2×C20).225(C2×C4), (C2×C8⋊D5).14C2, SmallGroup(320,72)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C8.25D20
C1C5C10C20C40C2×C40C2×C8⋊D5 — C8.25D20
C5C10C2×C10 — C8.25D20
C1C4C2×C8M5(2)

Generators and relations for C8.25D20
 G = < a,b,c,d | a16=b2=c5=d2=1, bab=a9, ac=ca, dad=ab, bc=cb, bd=db, dcd=c-1 >

Subgroups: 214 in 58 conjugacy classes, 27 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C8, C2×C4, C2×C4, C23, D5, C10, C10, C16, C2×C8, C2×C8, M4(2), C22×C4, Dic5, C20, D10, C2×C10, M5(2), M5(2), C2×M4(2), C52C8, C40, C4×D5, C2×Dic5, C2×C20, C22×D5, C23.C8, C52C16, C80, C8⋊D5, C2×C52C8, C2×C40, C2×C4×D5, C20.4C8, C5×M5(2), C2×C8⋊D5, C8.25D20
Quotients: C1, C2, C4, C22, C8, C2×C4, D4, D5, C22⋊C4, C2×C8, M4(2), D10, C22⋊C8, C4×D5, D20, C5⋊D4, C23.C8, C8×D5, C8⋊D5, D10⋊C4, D101C8, C8.25D20

Smallest permutation representation of C8.25D20
On 80 points
Generators in S80
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(2 10)(4 12)(6 14)(8 16)(18 26)(20 28)(22 30)(24 32)(33 41)(35 43)(37 45)(39 47)(49 57)(51 59)(53 61)(55 63)(65 73)(67 75)(69 77)(71 79)
(1 23 36 78 62)(2 24 37 79 63)(3 25 38 80 64)(4 26 39 65 49)(5 27 40 66 50)(6 28 41 67 51)(7 29 42 68 52)(8 30 43 69 53)(9 31 44 70 54)(10 32 45 71 55)(11 17 46 72 56)(12 18 47 73 57)(13 19 48 74 58)(14 20 33 75 59)(15 21 34 76 60)(16 22 35 77 61)
(1 62)(2 55)(3 56)(4 49)(5 50)(6 59)(7 60)(8 53)(9 54)(10 63)(11 64)(12 57)(13 58)(14 51)(15 52)(16 61)(17 80)(18 73)(19 74)(20 67)(21 68)(22 77)(23 78)(24 71)(25 72)(26 65)(27 66)(28 75)(29 76)(30 69)(31 70)(32 79)(33 41)(34 42)(37 45)(38 46)

G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (2,10)(4,12)(6,14)(8,16)(18,26)(20,28)(22,30)(24,32)(33,41)(35,43)(37,45)(39,47)(49,57)(51,59)(53,61)(55,63)(65,73)(67,75)(69,77)(71,79), (1,23,36,78,62)(2,24,37,79,63)(3,25,38,80,64)(4,26,39,65,49)(5,27,40,66,50)(6,28,41,67,51)(7,29,42,68,52)(8,30,43,69,53)(9,31,44,70,54)(10,32,45,71,55)(11,17,46,72,56)(12,18,47,73,57)(13,19,48,74,58)(14,20,33,75,59)(15,21,34,76,60)(16,22,35,77,61), (1,62)(2,55)(3,56)(4,49)(5,50)(6,59)(7,60)(8,53)(9,54)(10,63)(11,64)(12,57)(13,58)(14,51)(15,52)(16,61)(17,80)(18,73)(19,74)(20,67)(21,68)(22,77)(23,78)(24,71)(25,72)(26,65)(27,66)(28,75)(29,76)(30,69)(31,70)(32,79)(33,41)(34,42)(37,45)(38,46)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (2,10)(4,12)(6,14)(8,16)(18,26)(20,28)(22,30)(24,32)(33,41)(35,43)(37,45)(39,47)(49,57)(51,59)(53,61)(55,63)(65,73)(67,75)(69,77)(71,79), (1,23,36,78,62)(2,24,37,79,63)(3,25,38,80,64)(4,26,39,65,49)(5,27,40,66,50)(6,28,41,67,51)(7,29,42,68,52)(8,30,43,69,53)(9,31,44,70,54)(10,32,45,71,55)(11,17,46,72,56)(12,18,47,73,57)(13,19,48,74,58)(14,20,33,75,59)(15,21,34,76,60)(16,22,35,77,61), (1,62)(2,55)(3,56)(4,49)(5,50)(6,59)(7,60)(8,53)(9,54)(10,63)(11,64)(12,57)(13,58)(14,51)(15,52)(16,61)(17,80)(18,73)(19,74)(20,67)(21,68)(22,77)(23,78)(24,71)(25,72)(26,65)(27,66)(28,75)(29,76)(30,69)(31,70)(32,79)(33,41)(34,42)(37,45)(38,46) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(2,10),(4,12),(6,14),(8,16),(18,26),(20,28),(22,30),(24,32),(33,41),(35,43),(37,45),(39,47),(49,57),(51,59),(53,61),(55,63),(65,73),(67,75),(69,77),(71,79)], [(1,23,36,78,62),(2,24,37,79,63),(3,25,38,80,64),(4,26,39,65,49),(5,27,40,66,50),(6,28,41,67,51),(7,29,42,68,52),(8,30,43,69,53),(9,31,44,70,54),(10,32,45,71,55),(11,17,46,72,56),(12,18,47,73,57),(13,19,48,74,58),(14,20,33,75,59),(15,21,34,76,60),(16,22,35,77,61)], [(1,62),(2,55),(3,56),(4,49),(5,50),(6,59),(7,60),(8,53),(9,54),(10,63),(11,64),(12,57),(13,58),(14,51),(15,52),(16,61),(17,80),(18,73),(19,74),(20,67),(21,68),(22,77),(23,78),(24,71),(25,72),(26,65),(27,66),(28,75),(29,76),(30,69),(31,70),(32,79),(33,41),(34,42),(37,45),(38,46)]])

62 conjugacy classes

class 1 2A2B2C4A4B4C4D5A5B8A8B8C8D8E8F10A10B10C10D16A16B16C16D16E16F16G16H20A20B20C20D20E20F40A···40H40I40J40K40L80A···80P
order122244445588888810101010161616161616161620202020202040···404040404080···80
size1122011220222222202022444444202020202222442···244444···4

62 irreducible representations

dim1111111122222222244
type++++++++
imageC1C2C2C2C4C4C8C8D4D5M4(2)D10D20C5⋊D4C4×D5C8⋊D5C8×D5C23.C8C8.25D20
kernelC8.25D20C20.4C8C5×M5(2)C2×C8⋊D5C2×C52C8C2×C4×D5C2×Dic5C22×D5C40M5(2)C20C2×C8C8C8C2×C4C4C22C5C1
# reps1111224422224448828

Matrix representation of C8.25D20 in GL4(𝔽241) generated by

0010
0001
1544300
1988700
,
1000
0100
002400
000240
,
0100
24018900
0001
00240189
,
0100
1000
0001
0010
G:=sub<GL(4,GF(241))| [0,0,154,198,0,0,43,87,1,0,0,0,0,1,0,0],[1,0,0,0,0,1,0,0,0,0,240,0,0,0,0,240],[0,240,0,0,1,189,0,0,0,0,0,240,0,0,1,189],[0,1,0,0,1,0,0,0,0,0,0,1,0,0,1,0] >;

C8.25D20 in GAP, Magma, Sage, TeX

C_8._{25}D_{20}
% in TeX

G:=Group("C8.25D20");
// GroupNames label

G:=SmallGroup(320,72);
// by ID

G=gap.SmallGroup(320,72);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,141,36,758,100,570,102,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^16=b^2=c^5=d^2=1,b*a*b=a^9,a*c=c*a,d*a*d=a*b,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽