direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: C2×C5⋊2C8, C10⋊2C8, C20.6C4, C4.14D10, C4.3Dic5, C20.14C22, C22.2Dic5, C5⋊4(C2×C8), C4○(C5⋊2C8), (C2×C4).5D5, (C2×C10).4C4, (C2×C20).6C2, C10.13(C2×C4), C2.1(C2×Dic5), SmallGroup(80,9)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C5 — C10 — C20 — C5⋊2C8 — C2×C5⋊2C8 |
C5 — C2×C5⋊2C8 |
Generators and relations for C2×C5⋊2C8
G = < a,b,c | a2=b5=c8=1, ab=ba, ac=ca, cbc-1=b-1 >
(1 60)(2 61)(3 62)(4 63)(5 64)(6 57)(7 58)(8 59)(9 36)(10 37)(11 38)(12 39)(13 40)(14 33)(15 34)(16 35)(17 25)(18 26)(19 27)(20 28)(21 29)(22 30)(23 31)(24 32)(41 70)(42 71)(43 72)(44 65)(45 66)(46 67)(47 68)(48 69)(49 78)(50 79)(51 80)(52 73)(53 74)(54 75)(55 76)(56 77)
(1 11 25 67 75)(2 76 68 26 12)(3 13 27 69 77)(4 78 70 28 14)(5 15 29 71 79)(6 80 72 30 16)(7 9 31 65 73)(8 74 66 32 10)(17 46 54 60 38)(18 39 61 55 47)(19 48 56 62 40)(20 33 63 49 41)(21 42 50 64 34)(22 35 57 51 43)(23 44 52 58 36)(24 37 59 53 45)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)
G:=sub<Sym(80)| (1,60)(2,61)(3,62)(4,63)(5,64)(6,57)(7,58)(8,59)(9,36)(10,37)(11,38)(12,39)(13,40)(14,33)(15,34)(16,35)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32)(41,70)(42,71)(43,72)(44,65)(45,66)(46,67)(47,68)(48,69)(49,78)(50,79)(51,80)(52,73)(53,74)(54,75)(55,76)(56,77), (1,11,25,67,75)(2,76,68,26,12)(3,13,27,69,77)(4,78,70,28,14)(5,15,29,71,79)(6,80,72,30,16)(7,9,31,65,73)(8,74,66,32,10)(17,46,54,60,38)(18,39,61,55,47)(19,48,56,62,40)(20,33,63,49,41)(21,42,50,64,34)(22,35,57,51,43)(23,44,52,58,36)(24,37,59,53,45), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)>;
G:=Group( (1,60)(2,61)(3,62)(4,63)(5,64)(6,57)(7,58)(8,59)(9,36)(10,37)(11,38)(12,39)(13,40)(14,33)(15,34)(16,35)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32)(41,70)(42,71)(43,72)(44,65)(45,66)(46,67)(47,68)(48,69)(49,78)(50,79)(51,80)(52,73)(53,74)(54,75)(55,76)(56,77), (1,11,25,67,75)(2,76,68,26,12)(3,13,27,69,77)(4,78,70,28,14)(5,15,29,71,79)(6,80,72,30,16)(7,9,31,65,73)(8,74,66,32,10)(17,46,54,60,38)(18,39,61,55,47)(19,48,56,62,40)(20,33,63,49,41)(21,42,50,64,34)(22,35,57,51,43)(23,44,52,58,36)(24,37,59,53,45), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80) );
G=PermutationGroup([[(1,60),(2,61),(3,62),(4,63),(5,64),(6,57),(7,58),(8,59),(9,36),(10,37),(11,38),(12,39),(13,40),(14,33),(15,34),(16,35),(17,25),(18,26),(19,27),(20,28),(21,29),(22,30),(23,31),(24,32),(41,70),(42,71),(43,72),(44,65),(45,66),(46,67),(47,68),(48,69),(49,78),(50,79),(51,80),(52,73),(53,74),(54,75),(55,76),(56,77)], [(1,11,25,67,75),(2,76,68,26,12),(3,13,27,69,77),(4,78,70,28,14),(5,15,29,71,79),(6,80,72,30,16),(7,9,31,65,73),(8,74,66,32,10),(17,46,54,60,38),(18,39,61,55,47),(19,48,56,62,40),(20,33,63,49,41),(21,42,50,64,34),(22,35,57,51,43),(23,44,52,58,36),(24,37,59,53,45)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80)]])
C2×C5⋊2C8 is a maximal subgroup of
C42.D5 C20⋊3C8 C10.D8 C20.Q8 D20⋊6C4 C10.Q16 C8×Dic5 C20.8Q8 C40⋊8C4 D10⋊1C8 C20.53D4 C20.55D4 D4⋊Dic5 Q8⋊Dic5 C20.C8 D5×C2×C8 D20.2C4 D4.Dic5 D4.8D10 C20.14F5
C2×C5⋊2C8 is a maximal quotient of
C20⋊3C8 C20.4C8 C20.55D4 C20.14F5
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 5A | 5B | 8A | ··· | 8H | 10A | ··· | 10F | 20A | ··· | 20H |
order | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 5 | 5 | 8 | ··· | 8 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 5 | ··· | 5 | 2 | ··· | 2 | 2 | ··· | 2 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | - | + | - | ||||
image | C1 | C2 | C2 | C4 | C4 | C8 | D5 | Dic5 | D10 | Dic5 | C5⋊2C8 |
kernel | C2×C5⋊2C8 | C5⋊2C8 | C2×C20 | C20 | C2×C10 | C10 | C2×C4 | C4 | C4 | C22 | C2 |
# reps | 1 | 2 | 1 | 2 | 2 | 8 | 2 | 2 | 2 | 2 | 8 |
Matrix representation of C2×C5⋊2C8 ►in GL3(𝔽41) generated by
40 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 1 |
1 | 0 | 0 |
0 | 34 | 40 |
0 | 1 | 0 |
1 | 0 | 0 |
0 | 31 | 3 |
0 | 32 | 10 |
G:=sub<GL(3,GF(41))| [40,0,0,0,1,0,0,0,1],[1,0,0,0,34,1,0,40,0],[1,0,0,0,31,32,0,3,10] >;
C2×C5⋊2C8 in GAP, Magma, Sage, TeX
C_2\times C_5\rtimes_2C_8
% in TeX
G:=Group("C2xC5:2C8");
// GroupNames label
G:=SmallGroup(80,9);
// by ID
G=gap.SmallGroup(80,9);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-5,20,42,1604]);
// Polycyclic
G:=Group<a,b,c|a^2=b^5=c^8=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations
Export