Copied to
clipboard

G = (C2×C8)⋊F5order 320 = 26·5

1st semidirect product of C2×C8 and F5 acting via F5/C5=C4

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: (C2×C8)⋊1F5, (C2×C40)⋊3C4, C4.8(C4⋊F5), (C4×D5).55D4, C20.15(C4⋊C4), (C4×D5).12Q8, C22.F52C4, C22⋊F5.1C4, D10.4(C4⋊C4), C22.1(C4×F5), Dic5.4(C4⋊C4), (C2×C10).12C42, D5⋊M4(2).9C2, C4.38(C22⋊F5), C20.36(C22⋊C4), C52(M4(2)⋊4C4), D10.4(C22⋊C4), Dic5.3(C22⋊C4), C10.9(C2.C42), C2.10(D10.3Q8), D10.C23.9C2, (C2×C52C8)⋊4C4, (C2×C8⋊D5).7C2, (C2×C4).125(C2×F5), (C2×C20).141(C2×C4), (C2×C4×D5).281C22, (C2×Dic5).42(C2×C4), (C22×D5).35(C2×C4), SmallGroup(320,232)

Series: Derived Chief Lower central Upper central

C1C2×C10 — (C2×C8)⋊F5
C1C5C10D10C4×D5C2×C4×D5D10.C23 — (C2×C8)⋊F5
C5C10C2×C10 — (C2×C8)⋊F5
C1C4C2×C4C2×C8

Generators and relations for (C2×C8)⋊F5
 G = < a,b,c,d | a2=b8=c5=d4=1, ab=ba, ac=ca, dad-1=ab4, bc=cb, dbd-1=ab5, dcd-1=c3 >

Subgroups: 370 in 90 conjugacy classes, 34 normal (30 characteristic)
C1, C2, C2 [×3], C4 [×2], C4 [×4], C22, C22 [×3], C5, C8 [×4], C2×C4, C2×C4 [×7], C23, D5 [×2], C10, C10, C42, C22⋊C4 [×2], C4⋊C4, C2×C8, C2×C8 [×2], M4(2) [×5], C22×C4, Dic5 [×2], C20 [×2], F5 [×2], D10 [×2], D10, C2×C10, C42⋊C2, C2×M4(2) [×2], C52C8, C40, C5⋊C8 [×2], C4×D5 [×4], C2×Dic5, C2×C20, C2×F5 [×2], C22×D5, M4(2)⋊4C4, C8⋊D5 [×2], C2×C52C8, C2×C40, D5⋊C8, C4.F5, C4×F5, C4⋊F5, C22.F5 [×2], C22⋊F5 [×2], C2×C4×D5, C2×C8⋊D5, D5⋊M4(2), D10.C23, (C2×C8)⋊F5
Quotients: C1, C2 [×3], C4 [×6], C22, C2×C4 [×3], D4 [×3], Q8, C42, C22⋊C4 [×3], C4⋊C4 [×3], F5, C2.C42, C2×F5, M4(2)⋊4C4, C4×F5, C4⋊F5, C22⋊F5, D10.3Q8, (C2×C8)⋊F5

Smallest permutation representation of (C2×C8)⋊F5
On 80 points
Generators in S80
(1 18)(2 19)(3 20)(4 21)(5 22)(6 23)(7 24)(8 17)(9 26)(10 27)(11 28)(12 29)(13 30)(14 31)(15 32)(16 25)(33 62)(34 63)(35 64)(36 57)(37 58)(38 59)(39 60)(40 61)(41 54)(42 55)(43 56)(44 49)(45 50)(46 51)(47 52)(48 53)(65 73)(66 74)(67 75)(68 76)(69 77)(70 78)(71 79)(72 80)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)
(1 54 58 29 73)(2 55 59 30 74)(3 56 60 31 75)(4 49 61 32 76)(5 50 62 25 77)(6 51 63 26 78)(7 52 64 27 79)(8 53 57 28 80)(9 70 23 46 34)(10 71 24 47 35)(11 72 17 48 36)(12 65 18 41 37)(13 66 19 42 38)(14 67 20 43 39)(15 68 21 44 40)(16 69 22 45 33)
(1 7 5 3)(2 17)(4 19)(6 21)(8 23)(9 53 34 80)(10 41 39 69)(11 55 36 74)(12 43 33 71)(13 49 38 76)(14 45 35 65)(15 51 40 78)(16 47 37 67)(18 20 22 24)(25 56 58 79)(26 44 63 68)(27 50 60 73)(28 46 57 70)(29 52 62 75)(30 48 59 72)(31 54 64 77)(32 42 61 66)

G:=sub<Sym(80)| (1,18)(2,19)(3,20)(4,21)(5,22)(6,23)(7,24)(8,17)(9,26)(10,27)(11,28)(12,29)(13,30)(14,31)(15,32)(16,25)(33,62)(34,63)(35,64)(36,57)(37,58)(38,59)(39,60)(40,61)(41,54)(42,55)(43,56)(44,49)(45,50)(46,51)(47,52)(48,53)(65,73)(66,74)(67,75)(68,76)(69,77)(70,78)(71,79)(72,80), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80), (1,54,58,29,73)(2,55,59,30,74)(3,56,60,31,75)(4,49,61,32,76)(5,50,62,25,77)(6,51,63,26,78)(7,52,64,27,79)(8,53,57,28,80)(9,70,23,46,34)(10,71,24,47,35)(11,72,17,48,36)(12,65,18,41,37)(13,66,19,42,38)(14,67,20,43,39)(15,68,21,44,40)(16,69,22,45,33), (1,7,5,3)(2,17)(4,19)(6,21)(8,23)(9,53,34,80)(10,41,39,69)(11,55,36,74)(12,43,33,71)(13,49,38,76)(14,45,35,65)(15,51,40,78)(16,47,37,67)(18,20,22,24)(25,56,58,79)(26,44,63,68)(27,50,60,73)(28,46,57,70)(29,52,62,75)(30,48,59,72)(31,54,64,77)(32,42,61,66)>;

G:=Group( (1,18)(2,19)(3,20)(4,21)(5,22)(6,23)(7,24)(8,17)(9,26)(10,27)(11,28)(12,29)(13,30)(14,31)(15,32)(16,25)(33,62)(34,63)(35,64)(36,57)(37,58)(38,59)(39,60)(40,61)(41,54)(42,55)(43,56)(44,49)(45,50)(46,51)(47,52)(48,53)(65,73)(66,74)(67,75)(68,76)(69,77)(70,78)(71,79)(72,80), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80), (1,54,58,29,73)(2,55,59,30,74)(3,56,60,31,75)(4,49,61,32,76)(5,50,62,25,77)(6,51,63,26,78)(7,52,64,27,79)(8,53,57,28,80)(9,70,23,46,34)(10,71,24,47,35)(11,72,17,48,36)(12,65,18,41,37)(13,66,19,42,38)(14,67,20,43,39)(15,68,21,44,40)(16,69,22,45,33), (1,7,5,3)(2,17)(4,19)(6,21)(8,23)(9,53,34,80)(10,41,39,69)(11,55,36,74)(12,43,33,71)(13,49,38,76)(14,45,35,65)(15,51,40,78)(16,47,37,67)(18,20,22,24)(25,56,58,79)(26,44,63,68)(27,50,60,73)(28,46,57,70)(29,52,62,75)(30,48,59,72)(31,54,64,77)(32,42,61,66) );

G=PermutationGroup([(1,18),(2,19),(3,20),(4,21),(5,22),(6,23),(7,24),(8,17),(9,26),(10,27),(11,28),(12,29),(13,30),(14,31),(15,32),(16,25),(33,62),(34,63),(35,64),(36,57),(37,58),(38,59),(39,60),(40,61),(41,54),(42,55),(43,56),(44,49),(45,50),(46,51),(47,52),(48,53),(65,73),(66,74),(67,75),(68,76),(69,77),(70,78),(71,79),(72,80)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80)], [(1,54,58,29,73),(2,55,59,30,74),(3,56,60,31,75),(4,49,61,32,76),(5,50,62,25,77),(6,51,63,26,78),(7,52,64,27,79),(8,53,57,28,80),(9,70,23,46,34),(10,71,24,47,35),(11,72,17,48,36),(12,65,18,41,37),(13,66,19,42,38),(14,67,20,43,39),(15,68,21,44,40),(16,69,22,45,33)], [(1,7,5,3),(2,17),(4,19),(6,21),(8,23),(9,53,34,80),(10,41,39,69),(11,55,36,74),(12,43,33,71),(13,49,38,76),(14,45,35,65),(15,51,40,78),(16,47,37,67),(18,20,22,24),(25,56,58,79),(26,44,63,68),(27,50,60,73),(28,46,57,70),(29,52,62,75),(30,48,59,72),(31,54,64,77),(32,42,61,66)])

38 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E4F4G4H4I 5 8A8B8C···8H10A10B10C20A20B20C20D40A···40H
order122224444444445888···81010102020202040···40
size112101011210102020202044420···2044444444···4

38 irreducible representations

dim11111111224444444
type+++++-+++
imageC1C2C2C2C4C4C4C4D4Q8F5C2×F5M4(2)⋊4C4C4⋊F5C22⋊F5C4×F5(C2×C8)⋊F5
kernel(C2×C8)⋊F5C2×C8⋊D5D5⋊M4(2)D10.C23C2×C52C8C2×C40C22.F5C22⋊F5C4×D5C4×D5C2×C8C2×C4C5C4C4C22C1
# reps11112244311122228

Matrix representation of (C2×C8)⋊F5 in GL4(𝔽41) generated by

1903838
32230
03223
3838019
,
9182138
3122124
17202938
3202332
,
40404040
1000
0100
0010
,
9000
0009
0900
32323232
G:=sub<GL(4,GF(41))| [19,3,0,38,0,22,3,38,38,3,22,0,38,0,3,19],[9,3,17,3,18,12,20,20,21,21,29,23,38,24,38,32],[40,1,0,0,40,0,1,0,40,0,0,1,40,0,0,0],[9,0,0,32,0,0,9,32,0,0,0,32,0,9,0,32] >;

(C2×C8)⋊F5 in GAP, Magma, Sage, TeX

(C_2\times C_8)\rtimes F_5
% in TeX

G:=Group("(C2xC8):F5");
// GroupNames label

G:=SmallGroup(320,232);
// by ID

G=gap.SmallGroup(320,232);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,28,253,64,387,136,1684,6278,3156]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^8=c^5=d^4=1,a*b=b*a,a*c=c*a,d*a*d^-1=a*b^4,b*c=c*b,d*b*d^-1=a*b^5,d*c*d^-1=c^3>;
// generators/relations

׿
×
𝔽