Extensions 1→N→G→Q→1 with N=D8 and Q=C2×C10

Direct product G=N×Q with N=D8 and Q=C2×C10
dρLabelID
D8×C2×C10160D8xC2xC10320,1571

Semidirect products G=N:Q with N=D8 and Q=C2×C10
extensionφ:Q→Out NdρLabelID
D81(C2×C10) = C10×D16φ: C2×C10/C10C2 ⊆ Out D8160D8:1(C2xC10)320,1006
D82(C2×C10) = C5×C16⋊C22φ: C2×C10/C10C2 ⊆ Out D8804D8:2(C2xC10)320,1010
D83(C2×C10) = C10×C8⋊C22φ: C2×C10/C10C2 ⊆ Out D880D8:3(C2xC10)320,1575
D84(C2×C10) = C5×D8⋊C22φ: C2×C10/C10C2 ⊆ Out D8804D8:4(C2xC10)320,1577
D85(C2×C10) = C5×D4○SD16φ: C2×C10/C10C2 ⊆ Out D8804D8:5(C2xC10)320,1579
D86(C2×C10) = C10×C4○D8φ: trivial image160D8:6(C2xC10)320,1574
D87(C2×C10) = C5×D4○D8φ: trivial image804D8:7(C2xC10)320,1578

Non-split extensions G=N.Q with N=D8 and Q=C2×C10
extensionφ:Q→Out NdρLabelID
D8.1(C2×C10) = C10×SD32φ: C2×C10/C10C2 ⊆ Out D8160D8.1(C2xC10)320,1007
D8.2(C2×C10) = C5×C4○D16φ: C2×C10/C10C2 ⊆ Out D81602D8.2(C2xC10)320,1009
D8.3(C2×C10) = C5×Q32⋊C2φ: C2×C10/C10C2 ⊆ Out D81604D8.3(C2xC10)320,1011
D8.4(C2×C10) = C5×Q8○D8φ: trivial image1604D8.4(C2xC10)320,1580

׿
×
𝔽