direct product, metabelian, nilpotent (class 3), monomial, 2-elementary
Aliases: C5xD4oD8, C20.85C24, C40.52C23, 2+ 1+4:3C10, C4oD8:4C10, C8oD4:3C10, D8:7(C2xC10), (C2xD8):12C10, (C10xD8):26C2, C8:C22:4C10, Q16:7(C2xC10), (C5xD4).45D4, D4.11(C5xD4), C4.45(D4xC10), (C5xQ8).45D4, Q8.11(C5xD4), (C2xC40):31C22, SD16:4(C2xC10), C20.406(C2xD4), (C5xD8):21C22, C4.8(C23xC10), C22.7(D4xC10), (D4xC10):40C22, M4(2):6(C2xC10), C8.10(C22xC10), (C5xQ16):21C22, D4.5(C22xC10), (C5xD4).38C23, Q8.5(C22xC10), (C5xQ8).39C23, (C2xC20).687C23, (C5xSD16):20C22, C10.206(C22xD4), (C5x2+ 1+4):9C2, (C5xM4(2)):32C22, (C2xC8):4(C2xC10), C2.30(D4xC2xC10), C4oD4:1(C2xC10), (C5xC8oD4):12C2, (C5xC4oD8):11C2, (C2xD4):7(C2xC10), (C5xC8:C22):11C2, (C2xC10).184(C2xD4), (C5xC4oD4):14C22, (C2xC4).48(C22xC10), SmallGroup(320,1578)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C5xD4oD8
G = < a,b,c,d,e | a5=b4=c2=e2=1, d4=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede=b2d3 >
Subgroups: 474 in 268 conjugacy classes, 158 normal (18 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C5, C8, C8, C2xC4, C2xC4, D4, D4, Q8, Q8, C23, C10, C10, C2xC8, M4(2), D8, SD16, Q16, C2xD4, C2xD4, C4oD4, C4oD4, C4oD4, C20, C20, C20, C2xC10, C2xC10, C8oD4, C2xD8, C4oD8, C8:C22, 2+ 1+4, C40, C40, C2xC20, C2xC20, C5xD4, C5xD4, C5xQ8, C5xQ8, C22xC10, D4oD8, C2xC40, C5xM4(2), C5xD8, C5xSD16, C5xQ16, D4xC10, D4xC10, C5xC4oD4, C5xC4oD4, C5xC4oD4, C5xC8oD4, C10xD8, C5xC4oD8, C5xC8:C22, C5x2+ 1+4, C5xD4oD8
Quotients: C1, C2, C22, C5, D4, C23, C10, C2xD4, C24, C2xC10, C22xD4, C5xD4, C22xC10, D4oD8, D4xC10, C23xC10, D4xC2xC10, C5xD4oD8
(1 23 69 49 27)(2 24 70 50 28)(3 17 71 51 29)(4 18 72 52 30)(5 19 65 53 31)(6 20 66 54 32)(7 21 67 55 25)(8 22 68 56 26)(9 78 58 36 47)(10 79 59 37 48)(11 80 60 38 41)(12 73 61 39 42)(13 74 62 40 43)(14 75 63 33 44)(15 76 64 34 45)(16 77 57 35 46)
(1 35 5 39)(2 36 6 40)(3 37 7 33)(4 38 8 34)(9 66 13 70)(10 67 14 71)(11 68 15 72)(12 69 16 65)(17 48 21 44)(18 41 22 45)(19 42 23 46)(20 43 24 47)(25 63 29 59)(26 64 30 60)(27 57 31 61)(28 58 32 62)(49 77 53 73)(50 78 54 74)(51 79 55 75)(52 80 56 76)
(9 13)(10 14)(11 15)(12 16)(33 37)(34 38)(35 39)(36 40)(41 45)(42 46)(43 47)(44 48)(57 61)(58 62)(59 63)(60 64)(73 77)(74 78)(75 79)(76 80)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)
(2 8)(3 7)(4 6)(9 15)(10 14)(11 13)(17 21)(18 20)(22 24)(25 29)(26 28)(30 32)(33 37)(34 36)(38 40)(41 43)(44 48)(45 47)(50 56)(51 55)(52 54)(58 64)(59 63)(60 62)(66 72)(67 71)(68 70)(74 80)(75 79)(76 78)
G:=sub<Sym(80)| (1,23,69,49,27)(2,24,70,50,28)(3,17,71,51,29)(4,18,72,52,30)(5,19,65,53,31)(6,20,66,54,32)(7,21,67,55,25)(8,22,68,56,26)(9,78,58,36,47)(10,79,59,37,48)(11,80,60,38,41)(12,73,61,39,42)(13,74,62,40,43)(14,75,63,33,44)(15,76,64,34,45)(16,77,57,35,46), (1,35,5,39)(2,36,6,40)(3,37,7,33)(4,38,8,34)(9,66,13,70)(10,67,14,71)(11,68,15,72)(12,69,16,65)(17,48,21,44)(18,41,22,45)(19,42,23,46)(20,43,24,47)(25,63,29,59)(26,64,30,60)(27,57,31,61)(28,58,32,62)(49,77,53,73)(50,78,54,74)(51,79,55,75)(52,80,56,76), (9,13)(10,14)(11,15)(12,16)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(57,61)(58,62)(59,63)(60,64)(73,77)(74,78)(75,79)(76,80), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80), (2,8)(3,7)(4,6)(9,15)(10,14)(11,13)(17,21)(18,20)(22,24)(25,29)(26,28)(30,32)(33,37)(34,36)(38,40)(41,43)(44,48)(45,47)(50,56)(51,55)(52,54)(58,64)(59,63)(60,62)(66,72)(67,71)(68,70)(74,80)(75,79)(76,78)>;
G:=Group( (1,23,69,49,27)(2,24,70,50,28)(3,17,71,51,29)(4,18,72,52,30)(5,19,65,53,31)(6,20,66,54,32)(7,21,67,55,25)(8,22,68,56,26)(9,78,58,36,47)(10,79,59,37,48)(11,80,60,38,41)(12,73,61,39,42)(13,74,62,40,43)(14,75,63,33,44)(15,76,64,34,45)(16,77,57,35,46), (1,35,5,39)(2,36,6,40)(3,37,7,33)(4,38,8,34)(9,66,13,70)(10,67,14,71)(11,68,15,72)(12,69,16,65)(17,48,21,44)(18,41,22,45)(19,42,23,46)(20,43,24,47)(25,63,29,59)(26,64,30,60)(27,57,31,61)(28,58,32,62)(49,77,53,73)(50,78,54,74)(51,79,55,75)(52,80,56,76), (9,13)(10,14)(11,15)(12,16)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(57,61)(58,62)(59,63)(60,64)(73,77)(74,78)(75,79)(76,80), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80), (2,8)(3,7)(4,6)(9,15)(10,14)(11,13)(17,21)(18,20)(22,24)(25,29)(26,28)(30,32)(33,37)(34,36)(38,40)(41,43)(44,48)(45,47)(50,56)(51,55)(52,54)(58,64)(59,63)(60,62)(66,72)(67,71)(68,70)(74,80)(75,79)(76,78) );
G=PermutationGroup([[(1,23,69,49,27),(2,24,70,50,28),(3,17,71,51,29),(4,18,72,52,30),(5,19,65,53,31),(6,20,66,54,32),(7,21,67,55,25),(8,22,68,56,26),(9,78,58,36,47),(10,79,59,37,48),(11,80,60,38,41),(12,73,61,39,42),(13,74,62,40,43),(14,75,63,33,44),(15,76,64,34,45),(16,77,57,35,46)], [(1,35,5,39),(2,36,6,40),(3,37,7,33),(4,38,8,34),(9,66,13,70),(10,67,14,71),(11,68,15,72),(12,69,16,65),(17,48,21,44),(18,41,22,45),(19,42,23,46),(20,43,24,47),(25,63,29,59),(26,64,30,60),(27,57,31,61),(28,58,32,62),(49,77,53,73),(50,78,54,74),(51,79,55,75),(52,80,56,76)], [(9,13),(10,14),(11,15),(12,16),(33,37),(34,38),(35,39),(36,40),(41,45),(42,46),(43,47),(44,48),(57,61),(58,62),(59,63),(60,64),(73,77),(74,78),(75,79),(76,80)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80)], [(2,8),(3,7),(4,6),(9,15),(10,14),(11,13),(17,21),(18,20),(22,24),(25,29),(26,28),(30,32),(33,37),(34,36),(38,40),(41,43),(44,48),(45,47),(50,56),(51,55),(52,54),(58,64),(59,63),(60,62),(66,72),(67,71),(68,70),(74,80),(75,79),(76,78)]])
110 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | ··· | 2J | 4A | 4B | 4C | 4D | 4E | 4F | 5A | 5B | 5C | 5D | 8A | 8B | 8C | 8D | 8E | 10A | 10B | 10C | 10D | 10E | ··· | 10P | 10Q | ··· | 10AN | 20A | ··· | 20P | 20Q | ··· | 20X | 40A | ··· | 40H | 40I | ··· | 40T |
order | 1 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 8 | 8 | 8 | 8 | 8 | 10 | 10 | 10 | 10 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | ··· | 20 | 20 | ··· | 20 | 40 | ··· | 40 | 40 | ··· | 40 |
size | 1 | 1 | 2 | 2 | 2 | 4 | ··· | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
110 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | |||||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C5 | C10 | C10 | C10 | C10 | C10 | D4 | D4 | C5xD4 | C5xD4 | D4oD8 | C5xD4oD8 |
kernel | C5xD4oD8 | C5xC8oD4 | C10xD8 | C5xC4oD8 | C5xC8:C22 | C5x2+ 1+4 | D4oD8 | C8oD4 | C2xD8 | C4oD8 | C8:C22 | 2+ 1+4 | C5xD4 | C5xQ8 | D4 | Q8 | C5 | C1 |
# reps | 1 | 1 | 3 | 3 | 6 | 2 | 4 | 4 | 12 | 12 | 24 | 8 | 3 | 1 | 12 | 4 | 2 | 8 |
Matrix representation of C5xD4oD8 ►in GL4(F41) generated by
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
0 | 8 | 40 | 12 |
0 | 8 | 0 | 12 |
1 | 40 | 0 | 0 |
0 | 39 | 0 | 33 |
1 | 0 | 0 | 8 |
0 | 1 | 0 | 8 |
0 | 0 | 40 | 0 |
0 | 0 | 0 | 40 |
29 | 29 | 14 | 27 |
12 | 29 | 14 | 0 |
0 | 0 | 17 | 12 |
0 | 0 | 17 | 0 |
0 | 1 | 8 | 0 |
1 | 0 | 8 | 0 |
0 | 0 | 40 | 0 |
0 | 0 | 39 | 1 |
G:=sub<GL(4,GF(41))| [16,0,0,0,0,16,0,0,0,0,16,0,0,0,0,16],[0,0,1,0,8,8,40,39,40,0,0,0,12,12,0,33],[1,0,0,0,0,1,0,0,0,0,40,0,8,8,0,40],[29,12,0,0,29,29,0,0,14,14,17,17,27,0,12,0],[0,1,0,0,1,0,0,0,8,8,40,39,0,0,0,1] >;
C5xD4oD8 in GAP, Magma, Sage, TeX
C_5\times D_4\circ D_8
% in TeX
G:=Group("C5xD4oD8");
// GroupNames label
G:=SmallGroup(320,1578);
// by ID
G=gap.SmallGroup(320,1578);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-5,-2,-2,1149,1193,10085,5052,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^5=b^4=c^2=e^2=1,d^4=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=b^2*d^3>;
// generators/relations