Copied to
clipboard

G = D8×C2×C10order 320 = 26·5

Direct product of C2×C10 and D8

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: D8×C2×C10, C4013C23, C20.78C24, (C22×C8)⋊7C10, C82(C22×C10), C4.18(D4×C10), (C22×C40)⋊21C2, (C2×C40)⋊50C22, C20.325(C2×D4), (C2×C20).432D4, D41(C22×C10), (C5×D4)⋊12C23, C4.1(C23×C10), C23.60(C5×D4), (C22×D4)⋊10C10, (D4×C10)⋊65C22, C22.65(D4×C10), (C2×C20).971C23, (C22×C10).221D4, C10.199(C22×D4), (C22×C20).601C22, (D4×C2×C10)⋊25C2, C2.23(D4×C2×C10), (C2×C8)⋊12(C2×C10), (C2×C4).88(C5×D4), (C2×D4)⋊14(C2×C10), (C2×C10).686(C2×D4), (C22×C4).128(C2×C10), (C2×C4).141(C22×C10), SmallGroup(320,1571)

Series: Derived Chief Lower central Upper central

C1C4 — D8×C2×C10
C1C2C4C20C5×D4C5×D8C10×D8 — D8×C2×C10
C1C2C4 — D8×C2×C10
C1C22×C10C22×C20 — D8×C2×C10

Generators and relations for D8×C2×C10
 G = < a,b,c,d | a2=b10=c8=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 658 in 338 conjugacy classes, 178 normal (14 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, D4, D4, C23, C23, C10, C10, C10, C2×C8, D8, C22×C4, C2×D4, C2×D4, C24, C20, C20, C2×C10, C2×C10, C22×C8, C2×D8, C22×D4, C40, C2×C20, C5×D4, C5×D4, C22×C10, C22×C10, C22×D8, C2×C40, C5×D8, C22×C20, D4×C10, D4×C10, C23×C10, C22×C40, C10×D8, D4×C2×C10, D8×C2×C10
Quotients: C1, C2, C22, C5, D4, C23, C10, D8, C2×D4, C24, C2×C10, C2×D8, C22×D4, C5×D4, C22×C10, C22×D8, C5×D8, D4×C10, C23×C10, C10×D8, D4×C2×C10, D8×C2×C10

Smallest permutation representation of D8×C2×C10
On 160 points
Generators in S160
(1 94)(2 95)(3 96)(4 97)(5 98)(6 99)(7 100)(8 91)(9 92)(10 93)(11 118)(12 119)(13 120)(14 111)(15 112)(16 113)(17 114)(18 115)(19 116)(20 117)(21 149)(22 150)(23 141)(24 142)(25 143)(26 144)(27 145)(28 146)(29 147)(30 148)(31 123)(32 124)(33 125)(34 126)(35 127)(36 128)(37 129)(38 130)(39 121)(40 122)(41 110)(42 101)(43 102)(44 103)(45 104)(46 105)(47 106)(48 107)(49 108)(50 109)(51 75)(52 76)(53 77)(54 78)(55 79)(56 80)(57 71)(58 72)(59 73)(60 74)(61 82)(62 83)(63 84)(64 85)(65 86)(66 87)(67 88)(68 89)(69 90)(70 81)(131 155)(132 156)(133 157)(134 158)(135 159)(136 160)(137 151)(138 152)(139 153)(140 154)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 22 65 16 59 34 41 158)(2 23 66 17 60 35 42 159)(3 24 67 18 51 36 43 160)(4 25 68 19 52 37 44 151)(5 26 69 20 53 38 45 152)(6 27 70 11 54 39 46 153)(7 28 61 12 55 40 47 154)(8 29 62 13 56 31 48 155)(9 30 63 14 57 32 49 156)(10 21 64 15 58 33 50 157)(71 124 108 132 92 148 84 111)(72 125 109 133 93 149 85 112)(73 126 110 134 94 150 86 113)(74 127 101 135 95 141 87 114)(75 128 102 136 96 142 88 115)(76 129 103 137 97 143 89 116)(77 130 104 138 98 144 90 117)(78 121 105 139 99 145 81 118)(79 122 106 140 100 146 82 119)(80 123 107 131 91 147 83 120)
(1 158)(2 159)(3 160)(4 151)(5 152)(6 153)(7 154)(8 155)(9 156)(10 157)(11 54)(12 55)(13 56)(14 57)(15 58)(16 59)(17 60)(18 51)(19 52)(20 53)(21 50)(22 41)(23 42)(24 43)(25 44)(26 45)(27 46)(28 47)(29 48)(30 49)(31 62)(32 63)(33 64)(34 65)(35 66)(36 67)(37 68)(38 69)(39 70)(40 61)(71 111)(72 112)(73 113)(74 114)(75 115)(76 116)(77 117)(78 118)(79 119)(80 120)(81 121)(82 122)(83 123)(84 124)(85 125)(86 126)(87 127)(88 128)(89 129)(90 130)(91 131)(92 132)(93 133)(94 134)(95 135)(96 136)(97 137)(98 138)(99 139)(100 140)(101 141)(102 142)(103 143)(104 144)(105 145)(106 146)(107 147)(108 148)(109 149)(110 150)

G:=sub<Sym(160)| (1,94)(2,95)(3,96)(4,97)(5,98)(6,99)(7,100)(8,91)(9,92)(10,93)(11,118)(12,119)(13,120)(14,111)(15,112)(16,113)(17,114)(18,115)(19,116)(20,117)(21,149)(22,150)(23,141)(24,142)(25,143)(26,144)(27,145)(28,146)(29,147)(30,148)(31,123)(32,124)(33,125)(34,126)(35,127)(36,128)(37,129)(38,130)(39,121)(40,122)(41,110)(42,101)(43,102)(44,103)(45,104)(46,105)(47,106)(48,107)(49,108)(50,109)(51,75)(52,76)(53,77)(54,78)(55,79)(56,80)(57,71)(58,72)(59,73)(60,74)(61,82)(62,83)(63,84)(64,85)(65,86)(66,87)(67,88)(68,89)(69,90)(70,81)(131,155)(132,156)(133,157)(134,158)(135,159)(136,160)(137,151)(138,152)(139,153)(140,154), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,22,65,16,59,34,41,158)(2,23,66,17,60,35,42,159)(3,24,67,18,51,36,43,160)(4,25,68,19,52,37,44,151)(5,26,69,20,53,38,45,152)(6,27,70,11,54,39,46,153)(7,28,61,12,55,40,47,154)(8,29,62,13,56,31,48,155)(9,30,63,14,57,32,49,156)(10,21,64,15,58,33,50,157)(71,124,108,132,92,148,84,111)(72,125,109,133,93,149,85,112)(73,126,110,134,94,150,86,113)(74,127,101,135,95,141,87,114)(75,128,102,136,96,142,88,115)(76,129,103,137,97,143,89,116)(77,130,104,138,98,144,90,117)(78,121,105,139,99,145,81,118)(79,122,106,140,100,146,82,119)(80,123,107,131,91,147,83,120), (1,158)(2,159)(3,160)(4,151)(5,152)(6,153)(7,154)(8,155)(9,156)(10,157)(11,54)(12,55)(13,56)(14,57)(15,58)(16,59)(17,60)(18,51)(19,52)(20,53)(21,50)(22,41)(23,42)(24,43)(25,44)(26,45)(27,46)(28,47)(29,48)(30,49)(31,62)(32,63)(33,64)(34,65)(35,66)(36,67)(37,68)(38,69)(39,70)(40,61)(71,111)(72,112)(73,113)(74,114)(75,115)(76,116)(77,117)(78,118)(79,119)(80,120)(81,121)(82,122)(83,123)(84,124)(85,125)(86,126)(87,127)(88,128)(89,129)(90,130)(91,131)(92,132)(93,133)(94,134)(95,135)(96,136)(97,137)(98,138)(99,139)(100,140)(101,141)(102,142)(103,143)(104,144)(105,145)(106,146)(107,147)(108,148)(109,149)(110,150)>;

G:=Group( (1,94)(2,95)(3,96)(4,97)(5,98)(6,99)(7,100)(8,91)(9,92)(10,93)(11,118)(12,119)(13,120)(14,111)(15,112)(16,113)(17,114)(18,115)(19,116)(20,117)(21,149)(22,150)(23,141)(24,142)(25,143)(26,144)(27,145)(28,146)(29,147)(30,148)(31,123)(32,124)(33,125)(34,126)(35,127)(36,128)(37,129)(38,130)(39,121)(40,122)(41,110)(42,101)(43,102)(44,103)(45,104)(46,105)(47,106)(48,107)(49,108)(50,109)(51,75)(52,76)(53,77)(54,78)(55,79)(56,80)(57,71)(58,72)(59,73)(60,74)(61,82)(62,83)(63,84)(64,85)(65,86)(66,87)(67,88)(68,89)(69,90)(70,81)(131,155)(132,156)(133,157)(134,158)(135,159)(136,160)(137,151)(138,152)(139,153)(140,154), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,22,65,16,59,34,41,158)(2,23,66,17,60,35,42,159)(3,24,67,18,51,36,43,160)(4,25,68,19,52,37,44,151)(5,26,69,20,53,38,45,152)(6,27,70,11,54,39,46,153)(7,28,61,12,55,40,47,154)(8,29,62,13,56,31,48,155)(9,30,63,14,57,32,49,156)(10,21,64,15,58,33,50,157)(71,124,108,132,92,148,84,111)(72,125,109,133,93,149,85,112)(73,126,110,134,94,150,86,113)(74,127,101,135,95,141,87,114)(75,128,102,136,96,142,88,115)(76,129,103,137,97,143,89,116)(77,130,104,138,98,144,90,117)(78,121,105,139,99,145,81,118)(79,122,106,140,100,146,82,119)(80,123,107,131,91,147,83,120), (1,158)(2,159)(3,160)(4,151)(5,152)(6,153)(7,154)(8,155)(9,156)(10,157)(11,54)(12,55)(13,56)(14,57)(15,58)(16,59)(17,60)(18,51)(19,52)(20,53)(21,50)(22,41)(23,42)(24,43)(25,44)(26,45)(27,46)(28,47)(29,48)(30,49)(31,62)(32,63)(33,64)(34,65)(35,66)(36,67)(37,68)(38,69)(39,70)(40,61)(71,111)(72,112)(73,113)(74,114)(75,115)(76,116)(77,117)(78,118)(79,119)(80,120)(81,121)(82,122)(83,123)(84,124)(85,125)(86,126)(87,127)(88,128)(89,129)(90,130)(91,131)(92,132)(93,133)(94,134)(95,135)(96,136)(97,137)(98,138)(99,139)(100,140)(101,141)(102,142)(103,143)(104,144)(105,145)(106,146)(107,147)(108,148)(109,149)(110,150) );

G=PermutationGroup([[(1,94),(2,95),(3,96),(4,97),(5,98),(6,99),(7,100),(8,91),(9,92),(10,93),(11,118),(12,119),(13,120),(14,111),(15,112),(16,113),(17,114),(18,115),(19,116),(20,117),(21,149),(22,150),(23,141),(24,142),(25,143),(26,144),(27,145),(28,146),(29,147),(30,148),(31,123),(32,124),(33,125),(34,126),(35,127),(36,128),(37,129),(38,130),(39,121),(40,122),(41,110),(42,101),(43,102),(44,103),(45,104),(46,105),(47,106),(48,107),(49,108),(50,109),(51,75),(52,76),(53,77),(54,78),(55,79),(56,80),(57,71),(58,72),(59,73),(60,74),(61,82),(62,83),(63,84),(64,85),(65,86),(66,87),(67,88),(68,89),(69,90),(70,81),(131,155),(132,156),(133,157),(134,158),(135,159),(136,160),(137,151),(138,152),(139,153),(140,154)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,22,65,16,59,34,41,158),(2,23,66,17,60,35,42,159),(3,24,67,18,51,36,43,160),(4,25,68,19,52,37,44,151),(5,26,69,20,53,38,45,152),(6,27,70,11,54,39,46,153),(7,28,61,12,55,40,47,154),(8,29,62,13,56,31,48,155),(9,30,63,14,57,32,49,156),(10,21,64,15,58,33,50,157),(71,124,108,132,92,148,84,111),(72,125,109,133,93,149,85,112),(73,126,110,134,94,150,86,113),(74,127,101,135,95,141,87,114),(75,128,102,136,96,142,88,115),(76,129,103,137,97,143,89,116),(77,130,104,138,98,144,90,117),(78,121,105,139,99,145,81,118),(79,122,106,140,100,146,82,119),(80,123,107,131,91,147,83,120)], [(1,158),(2,159),(3,160),(4,151),(5,152),(6,153),(7,154),(8,155),(9,156),(10,157),(11,54),(12,55),(13,56),(14,57),(15,58),(16,59),(17,60),(18,51),(19,52),(20,53),(21,50),(22,41),(23,42),(24,43),(25,44),(26,45),(27,46),(28,47),(29,48),(30,49),(31,62),(32,63),(33,64),(34,65),(35,66),(36,67),(37,68),(38,69),(39,70),(40,61),(71,111),(72,112),(73,113),(74,114),(75,115),(76,116),(77,117),(78,118),(79,119),(80,120),(81,121),(82,122),(83,123),(84,124),(85,125),(86,126),(87,127),(88,128),(89,129),(90,130),(91,131),(92,132),(93,133),(94,134),(95,135),(96,136),(97,137),(98,138),(99,139),(100,140),(101,141),(102,142),(103,143),(104,144),(105,145),(106,146),(107,147),(108,148),(109,149),(110,150)]])

140 conjugacy classes

class 1 2A···2G2H···2O4A4B4C4D5A5B5C5D8A···8H10A···10AB10AC···10BH20A···20P40A···40AF
order12···22···2444455558···810···1010···1020···2040···40
size11···14···4222211112···21···14···42···22···2

140 irreducible representations

dim11111111222222
type+++++++
imageC1C2C2C2C5C10C10C10D4D4D8C5×D4C5×D4C5×D8
kernelD8×C2×C10C22×C40C10×D8D4×C2×C10C22×D8C22×C8C2×D8C22×D4C2×C20C22×C10C2×C10C2×C4C23C22
# reps111224448831812432

Matrix representation of D8×C2×C10 in GL6(𝔽41)

100000
010000
0040000
0004000
000010
000001
,
2300000
0230000
0025000
0002500
000040
000004
,
4020000
4010000
000100
0040000
00001229
00001212
,
4020000
010000
000100
001000
00001229
00002929

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[23,0,0,0,0,0,0,23,0,0,0,0,0,0,25,0,0,0,0,0,0,25,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[40,40,0,0,0,0,2,1,0,0,0,0,0,0,0,40,0,0,0,0,1,0,0,0,0,0,0,0,12,12,0,0,0,0,29,12],[40,0,0,0,0,0,2,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,12,29,0,0,0,0,29,29] >;

D8×C2×C10 in GAP, Magma, Sage, TeX

D_8\times C_2\times C_{10}
% in TeX

G:=Group("D8xC2xC10");
// GroupNames label

G:=SmallGroup(320,1571);
// by ID

G=gap.SmallGroup(320,1571);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-5,-2,-2,1149,10085,5052,124]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^10=c^8=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽