extension | φ:Q→Out N | d | ρ | Label | ID |
(C4×Dic5)⋊1C4 = C23.D20 | φ: C4/C1 → C4 ⊆ Out C4×Dic5 | 80 | 8- | (C4xDic5):1C4 | 320,31 |
(C4×Dic5)⋊2C4 = C23.2D20 | φ: C4/C1 → C4 ⊆ Out C4×Dic5 | 40 | 8+ | (C4xDic5):2C4 | 320,32 |
(C4×Dic5)⋊3C4 = C42⋊1Dic5 | φ: C4/C1 → C4 ⊆ Out C4×Dic5 | 80 | 4 | (C4xDic5):3C4 | 320,89 |
(C4×Dic5)⋊4C4 = C23.9D20 | φ: C4/C1 → C4 ⊆ Out C4×Dic5 | 80 | 4 | (C4xDic5):4C4 | 320,115 |
(C4×Dic5)⋊5C4 = (C2×D4)⋊F5 | φ: C4/C1 → C4 ⊆ Out C4×Dic5 | 40 | 8+ | (C4xDic5):5C4 | 320,260 |
(C4×Dic5)⋊6C4 = (C2×Q8)⋊F5 | φ: C4/C1 → C4 ⊆ Out C4×Dic5 | 80 | 8+ | (C4xDic5):6C4 | 320,266 |
(C4×Dic5)⋊7C4 = C42⋊3F5 | φ: C4/C1 → C4 ⊆ Out C4×Dic5 | 80 | 4 | (C4xDic5):7C4 | 320,201 |
(C4×Dic5)⋊8C4 = C20.32C42 | φ: C4/C2 → C2 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):8C4 | 320,90 |
(C4×Dic5)⋊9C4 = C20.33C42 | φ: C4/C2 → C2 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):9C4 | 320,113 |
(C4×Dic5)⋊10C4 = C4⋊C4×Dic5 | φ: C4/C2 → C2 ⊆ Out C4×Dic5 | 320 | | (C4xDic5):10C4 | 320,602 |
(C4×Dic5)⋊11C4 = C20⋊5(C4⋊C4) | φ: C4/C2 → C2 ⊆ Out C4×Dic5 | 320 | | (C4xDic5):11C4 | 320,603 |
(C4×Dic5)⋊12C4 = C20.48(C4⋊C4) | φ: C4/C2 → C2 ⊆ Out C4×Dic5 | 320 | | (C4xDic5):12C4 | 320,604 |
(C4×Dic5)⋊13C4 = Dic5.15C42 | φ: C4/C2 → C2 ⊆ Out C4×Dic5 | 320 | | (C4xDic5):13C4 | 320,275 |
(C4×Dic5)⋊14C4 = Dic5⋊2C42 | φ: C4/C2 → C2 ⊆ Out C4×Dic5 | 320 | | (C4xDic5):14C4 | 320,276 |
(C4×Dic5)⋊15C4 = C5⋊2(C42⋊8C4) | φ: C4/C2 → C2 ⊆ Out C4×Dic5 | 320 | | (C4xDic5):15C4 | 320,277 |
(C4×Dic5)⋊16C4 = C5⋊2(C42⋊5C4) | φ: C4/C2 → C2 ⊆ Out C4×Dic5 | 320 | | (C4xDic5):16C4 | 320,278 |
(C4×Dic5)⋊17C4 = C4×C10.D4 | φ: C4/C2 → C2 ⊆ Out C4×Dic5 | 320 | | (C4xDic5):17C4 | 320,558 |
(C4×Dic5)⋊18C4 = C42⋊4Dic5 | φ: C4/C2 → C2 ⊆ Out C4×Dic5 | 320 | | (C4xDic5):18C4 | 320,559 |
(C4×Dic5)⋊19C4 = C42⋊4F5 | φ: C4/C2 → C2 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):19C4 | 320,1024 |
(C4×Dic5)⋊20C4 = C4×C4⋊F5 | φ: C4/C2 → C2 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):20C4 | 320,1025 |
(C4×Dic5)⋊21C4 = C42⋊9F5 | φ: C4/C2 → C2 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):21C4 | 320,1027 |
(C4×Dic5)⋊22C4 = C42⋊5F5 | φ: C4/C2 → C2 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):22C4 | 320,1028 |
(C4×Dic5)⋊23C4 = C42⋊8F5 | φ: C4/C2 → C2 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):23C4 | 320,1026 |
(C4×Dic5)⋊24C4 = C42⋊6F5 | φ: C4/C2 → C2 ⊆ Out C4×Dic5 | 40 | 4 | (C4xDic5):24C4 | 320,200 |
(C4×Dic5)⋊25C4 = C42×F5 | φ: C4/C2 → C2 ⊆ Out C4×Dic5 | 80 | | (C4xDic5):25C4 | 320,1023 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C4×Dic5).1C4 = (C2×C4).D20 | φ: C4/C1 → C4 ⊆ Out C4×Dic5 | 80 | 8+ | (C4xDic5).1C4 | 320,35 |
(C4×Dic5).2C4 = (C2×Q8).D10 | φ: C4/C1 → C4 ⊆ Out C4×Dic5 | 80 | 8- | (C4xDic5).2C4 | 320,36 |
(C4×Dic5).3C4 = C80⋊C4 | φ: C4/C1 → C4 ⊆ Out C4×Dic5 | 80 | 4 | (C4xDic5).3C4 | 320,70 |
(C4×Dic5).4C4 = (D4×C10).C4 | φ: C4/C1 → C4 ⊆ Out C4×Dic5 | 80 | 8- | (C4xDic5).4C4 | 320,261 |
(C4×Dic5).5C4 = (Q8×C10).C4 | φ: C4/C1 → C4 ⊆ Out C4×Dic5 | 80 | 8- | (C4xDic5).5C4 | 320,267 |
(C4×Dic5).6C4 = C20.23C42 | φ: C4/C1 → C4 ⊆ Out C4×Dic5 | 80 | 4 | (C4xDic5).6C4 | 320,228 |
(C4×Dic5).7C4 = C40.9Q8 | φ: C4/C2 → C2 ⊆ Out C4×Dic5 | 80 | 4 | (C4xDic5).7C4 | 320,69 |
(C4×Dic5).8C4 = D5×C4⋊C8 | φ: C4/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).8C4 | 320,459 |
(C4×Dic5).9C4 = C42.200D10 | φ: C4/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).9C4 | 320,460 |
(C4×Dic5).10C4 = C20⋊5M4(2) | φ: C4/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).10C4 | 320,464 |
(C4×Dic5).11C4 = M4(2)×Dic5 | φ: C4/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).11C4 | 320,744 |
(C4×Dic5).12C4 = Dic5⋊5M4(2) | φ: C4/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).12C4 | 320,745 |
(C4×Dic5).13C4 = C40.88D4 | φ: C4/C2 → C2 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).13C4 | 320,59 |
(C4×Dic5).14C4 = C80⋊17C4 | φ: C4/C2 → C2 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).14C4 | 320,60 |
(C4×Dic5).15C4 = C42.282D10 | φ: C4/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).15C4 | 320,312 |
(C4×Dic5).16C4 = C4×C8⋊D5 | φ: C4/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).16C4 | 320,314 |
(C4×Dic5).17C4 = D5×C8⋊C4 | φ: C4/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).17C4 | 320,331 |
(C4×Dic5).18C4 = C42.182D10 | φ: C4/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).18C4 | 320,332 |
(C4×Dic5).19C4 = D10.6C42 | φ: C4/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).19C4 | 320,334 |
(C4×Dic5).20C4 = Dic5.14M4(2) | φ: C4/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).20C4 | 320,345 |
(C4×Dic5).21C4 = Dic5.9M4(2) | φ: C4/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).21C4 | 320,346 |
(C4×Dic5).22C4 = C42.202D10 | φ: C4/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).22C4 | 320,462 |
(C4×Dic5).23C4 = C2×C20.8Q8 | φ: C4/C2 → C2 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).23C4 | 320,726 |
(C4×Dic5).24C4 = C2×C40⋊8C4 | φ: C4/C2 → C2 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).24C4 | 320,727 |
(C4×Dic5).25C4 = C42.6F5 | φ: C4/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).25C4 | 320,1016 |
(C4×Dic5).26C4 = C42.12F5 | φ: C4/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).26C4 | 320,1018 |
(C4×Dic5).27C4 = C42.15F5 | φ: C4/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).27C4 | 320,1021 |
(C4×Dic5).28C4 = C42.7F5 | φ: C4/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).28C4 | 320,1022 |
(C4×Dic5).29C4 = C2×C10.C42 | φ: C4/C2 → C2 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).29C4 | 320,1087 |
(C4×Dic5).30C4 = C2×Dic5⋊C8 | φ: C4/C2 → C2 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).30C4 | 320,1090 |
(C4×Dic5).31C4 = C20.34M4(2) | φ: C4/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).31C4 | 320,1092 |
(C4×Dic5).32C4 = Dic5.13M4(2) | φ: C4/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).32C4 | 320,1095 |
(C4×Dic5).33C4 = C20.30M4(2) | φ: C4/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).33C4 | 320,1097 |
(C4×Dic5).34C4 = C4×C4.F5 | φ: C4/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).34C4 | 320,1015 |
(C4×Dic5).35C4 = C20⋊3M4(2) | φ: C4/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).35C4 | 320,1019 |
(C4×Dic5).36C4 = C42.14F5 | φ: C4/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).36C4 | 320,1020 |
(C4×Dic5).37C4 = C2×C20⋊C8 | φ: C4/C2 → C2 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).37C4 | 320,1085 |
(C4×Dic5).38C4 = C20⋊8M4(2) | φ: C4/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).38C4 | 320,1096 |
(C4×Dic5).39C4 = C40.1C8 | φ: C4/C2 → C2 ⊆ Out C4×Dic5 | 80 | 4 | (C4xDic5).39C4 | 320,227 |
(C4×Dic5).40C4 = Dic5⋊C16 | φ: C4/C2 → C2 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).40C4 | 320,223 |
(C4×Dic5).41C4 = C40.C8 | φ: C4/C2 → C2 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).41C4 | 320,224 |
(C4×Dic5).42C4 = C10.M5(2) | φ: C4/C2 → C2 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).42C4 | 320,226 |
(C4×Dic5).43C4 = C4×D5⋊C8 | φ: C4/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).43C4 | 320,1013 |
(C4×Dic5).44C4 = C42.5F5 | φ: C4/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).44C4 | 320,1014 |
(C4×Dic5).45C4 = C42.11F5 | φ: C4/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).45C4 | 320,1017 |
(C4×Dic5).46C4 = C2×C4×C5⋊C8 | φ: C4/C2 → C2 ⊆ Out C4×Dic5 | 320 | | (C4xDic5).46C4 | 320,1084 |
(C4×Dic5).47C4 = Dic5.12M4(2) | φ: C4/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).47C4 | 320,1086 |
(C4×Dic5).48C4 = C4×C22.F5 | φ: C4/C2 → C2 ⊆ Out C4×Dic5 | 160 | | (C4xDic5).48C4 | 320,1088 |
(C4×Dic5).49C4 = C16×Dic5 | φ: trivial image | 320 | | (C4xDic5).49C4 | 320,58 |
(C4×Dic5).50C4 = D5×C4×C8 | φ: trivial image | 160 | | (C4xDic5).50C4 | 320,311 |
(C4×Dic5).51C4 = C2×C8×Dic5 | φ: trivial image | 320 | | (C4xDic5).51C4 | 320,725 |