Extensions 1→N→G→Q→1 with N=C4×Dic5 and Q=C4

Direct product G=N×Q with N=C4×Dic5 and Q=C4
dρLabelID
C42×Dic5320C4^2xDic5320,557

Semidirect products G=N:Q with N=C4×Dic5 and Q=C4
extensionφ:Q→Out NdρLabelID
(C4×Dic5)⋊1C4 = C23.D20φ: C4/C1C4 ⊆ Out C4×Dic5808-(C4xDic5):1C4320,31
(C4×Dic5)⋊2C4 = C23.2D20φ: C4/C1C4 ⊆ Out C4×Dic5408+(C4xDic5):2C4320,32
(C4×Dic5)⋊3C4 = C421Dic5φ: C4/C1C4 ⊆ Out C4×Dic5804(C4xDic5):3C4320,89
(C4×Dic5)⋊4C4 = C23.9D20φ: C4/C1C4 ⊆ Out C4×Dic5804(C4xDic5):4C4320,115
(C4×Dic5)⋊5C4 = (C2×D4)⋊F5φ: C4/C1C4 ⊆ Out C4×Dic5408+(C4xDic5):5C4320,260
(C4×Dic5)⋊6C4 = (C2×Q8)⋊F5φ: C4/C1C4 ⊆ Out C4×Dic5808+(C4xDic5):6C4320,266
(C4×Dic5)⋊7C4 = C423F5φ: C4/C1C4 ⊆ Out C4×Dic5804(C4xDic5):7C4320,201
(C4×Dic5)⋊8C4 = C20.32C42φ: C4/C2C2 ⊆ Out C4×Dic580(C4xDic5):8C4320,90
(C4×Dic5)⋊9C4 = C20.33C42φ: C4/C2C2 ⊆ Out C4×Dic580(C4xDic5):9C4320,113
(C4×Dic5)⋊10C4 = C4⋊C4×Dic5φ: C4/C2C2 ⊆ Out C4×Dic5320(C4xDic5):10C4320,602
(C4×Dic5)⋊11C4 = C205(C4⋊C4)φ: C4/C2C2 ⊆ Out C4×Dic5320(C4xDic5):11C4320,603
(C4×Dic5)⋊12C4 = C20.48(C4⋊C4)φ: C4/C2C2 ⊆ Out C4×Dic5320(C4xDic5):12C4320,604
(C4×Dic5)⋊13C4 = Dic5.15C42φ: C4/C2C2 ⊆ Out C4×Dic5320(C4xDic5):13C4320,275
(C4×Dic5)⋊14C4 = Dic52C42φ: C4/C2C2 ⊆ Out C4×Dic5320(C4xDic5):14C4320,276
(C4×Dic5)⋊15C4 = C52(C428C4)φ: C4/C2C2 ⊆ Out C4×Dic5320(C4xDic5):15C4320,277
(C4×Dic5)⋊16C4 = C52(C425C4)φ: C4/C2C2 ⊆ Out C4×Dic5320(C4xDic5):16C4320,278
(C4×Dic5)⋊17C4 = C4×C10.D4φ: C4/C2C2 ⊆ Out C4×Dic5320(C4xDic5):17C4320,558
(C4×Dic5)⋊18C4 = C424Dic5φ: C4/C2C2 ⊆ Out C4×Dic5320(C4xDic5):18C4320,559
(C4×Dic5)⋊19C4 = C424F5φ: C4/C2C2 ⊆ Out C4×Dic580(C4xDic5):19C4320,1024
(C4×Dic5)⋊20C4 = C4×C4⋊F5φ: C4/C2C2 ⊆ Out C4×Dic580(C4xDic5):20C4320,1025
(C4×Dic5)⋊21C4 = C429F5φ: C4/C2C2 ⊆ Out C4×Dic580(C4xDic5):21C4320,1027
(C4×Dic5)⋊22C4 = C425F5φ: C4/C2C2 ⊆ Out C4×Dic580(C4xDic5):22C4320,1028
(C4×Dic5)⋊23C4 = C428F5φ: C4/C2C2 ⊆ Out C4×Dic580(C4xDic5):23C4320,1026
(C4×Dic5)⋊24C4 = C426F5φ: C4/C2C2 ⊆ Out C4×Dic5404(C4xDic5):24C4320,200
(C4×Dic5)⋊25C4 = C42×F5φ: C4/C2C2 ⊆ Out C4×Dic580(C4xDic5):25C4320,1023

Non-split extensions G=N.Q with N=C4×Dic5 and Q=C4
extensionφ:Q→Out NdρLabelID
(C4×Dic5).1C4 = (C2×C4).D20φ: C4/C1C4 ⊆ Out C4×Dic5808+(C4xDic5).1C4320,35
(C4×Dic5).2C4 = (C2×Q8).D10φ: C4/C1C4 ⊆ Out C4×Dic5808-(C4xDic5).2C4320,36
(C4×Dic5).3C4 = C80⋊C4φ: C4/C1C4 ⊆ Out C4×Dic5804(C4xDic5).3C4320,70
(C4×Dic5).4C4 = (D4×C10).C4φ: C4/C1C4 ⊆ Out C4×Dic5808-(C4xDic5).4C4320,261
(C4×Dic5).5C4 = (Q8×C10).C4φ: C4/C1C4 ⊆ Out C4×Dic5808-(C4xDic5).5C4320,267
(C4×Dic5).6C4 = C20.23C42φ: C4/C1C4 ⊆ Out C4×Dic5804(C4xDic5).6C4320,228
(C4×Dic5).7C4 = C40.9Q8φ: C4/C2C2 ⊆ Out C4×Dic5804(C4xDic5).7C4320,69
(C4×Dic5).8C4 = D5×C4⋊C8φ: C4/C2C2 ⊆ Out C4×Dic5160(C4xDic5).8C4320,459
(C4×Dic5).9C4 = C42.200D10φ: C4/C2C2 ⊆ Out C4×Dic5160(C4xDic5).9C4320,460
(C4×Dic5).10C4 = C205M4(2)φ: C4/C2C2 ⊆ Out C4×Dic5160(C4xDic5).10C4320,464
(C4×Dic5).11C4 = M4(2)×Dic5φ: C4/C2C2 ⊆ Out C4×Dic5160(C4xDic5).11C4320,744
(C4×Dic5).12C4 = Dic55M4(2)φ: C4/C2C2 ⊆ Out C4×Dic5160(C4xDic5).12C4320,745
(C4×Dic5).13C4 = C40.88D4φ: C4/C2C2 ⊆ Out C4×Dic5320(C4xDic5).13C4320,59
(C4×Dic5).14C4 = C8017C4φ: C4/C2C2 ⊆ Out C4×Dic5320(C4xDic5).14C4320,60
(C4×Dic5).15C4 = C42.282D10φ: C4/C2C2 ⊆ Out C4×Dic5160(C4xDic5).15C4320,312
(C4×Dic5).16C4 = C4×C8⋊D5φ: C4/C2C2 ⊆ Out C4×Dic5160(C4xDic5).16C4320,314
(C4×Dic5).17C4 = D5×C8⋊C4φ: C4/C2C2 ⊆ Out C4×Dic5160(C4xDic5).17C4320,331
(C4×Dic5).18C4 = C42.182D10φ: C4/C2C2 ⊆ Out C4×Dic5160(C4xDic5).18C4320,332
(C4×Dic5).19C4 = D10.6C42φ: C4/C2C2 ⊆ Out C4×Dic5160(C4xDic5).19C4320,334
(C4×Dic5).20C4 = Dic5.14M4(2)φ: C4/C2C2 ⊆ Out C4×Dic5160(C4xDic5).20C4320,345
(C4×Dic5).21C4 = Dic5.9M4(2)φ: C4/C2C2 ⊆ Out C4×Dic5160(C4xDic5).21C4320,346
(C4×Dic5).22C4 = C42.202D10φ: C4/C2C2 ⊆ Out C4×Dic5160(C4xDic5).22C4320,462
(C4×Dic5).23C4 = C2×C20.8Q8φ: C4/C2C2 ⊆ Out C4×Dic5320(C4xDic5).23C4320,726
(C4×Dic5).24C4 = C2×C408C4φ: C4/C2C2 ⊆ Out C4×Dic5320(C4xDic5).24C4320,727
(C4×Dic5).25C4 = C42.6F5φ: C4/C2C2 ⊆ Out C4×Dic5160(C4xDic5).25C4320,1016
(C4×Dic5).26C4 = C42.12F5φ: C4/C2C2 ⊆ Out C4×Dic5160(C4xDic5).26C4320,1018
(C4×Dic5).27C4 = C42.15F5φ: C4/C2C2 ⊆ Out C4×Dic5160(C4xDic5).27C4320,1021
(C4×Dic5).28C4 = C42.7F5φ: C4/C2C2 ⊆ Out C4×Dic5160(C4xDic5).28C4320,1022
(C4×Dic5).29C4 = C2×C10.C42φ: C4/C2C2 ⊆ Out C4×Dic5320(C4xDic5).29C4320,1087
(C4×Dic5).30C4 = C2×Dic5⋊C8φ: C4/C2C2 ⊆ Out C4×Dic5320(C4xDic5).30C4320,1090
(C4×Dic5).31C4 = C20.34M4(2)φ: C4/C2C2 ⊆ Out C4×Dic5160(C4xDic5).31C4320,1092
(C4×Dic5).32C4 = Dic5.13M4(2)φ: C4/C2C2 ⊆ Out C4×Dic5160(C4xDic5).32C4320,1095
(C4×Dic5).33C4 = C20.30M4(2)φ: C4/C2C2 ⊆ Out C4×Dic5160(C4xDic5).33C4320,1097
(C4×Dic5).34C4 = C4×C4.F5φ: C4/C2C2 ⊆ Out C4×Dic5160(C4xDic5).34C4320,1015
(C4×Dic5).35C4 = C203M4(2)φ: C4/C2C2 ⊆ Out C4×Dic5160(C4xDic5).35C4320,1019
(C4×Dic5).36C4 = C42.14F5φ: C4/C2C2 ⊆ Out C4×Dic5160(C4xDic5).36C4320,1020
(C4×Dic5).37C4 = C2×C20⋊C8φ: C4/C2C2 ⊆ Out C4×Dic5320(C4xDic5).37C4320,1085
(C4×Dic5).38C4 = C208M4(2)φ: C4/C2C2 ⊆ Out C4×Dic5160(C4xDic5).38C4320,1096
(C4×Dic5).39C4 = C40.1C8φ: C4/C2C2 ⊆ Out C4×Dic5804(C4xDic5).39C4320,227
(C4×Dic5).40C4 = Dic5⋊C16φ: C4/C2C2 ⊆ Out C4×Dic5320(C4xDic5).40C4320,223
(C4×Dic5).41C4 = C40.C8φ: C4/C2C2 ⊆ Out C4×Dic5320(C4xDic5).41C4320,224
(C4×Dic5).42C4 = C10.M5(2)φ: C4/C2C2 ⊆ Out C4×Dic5320(C4xDic5).42C4320,226
(C4×Dic5).43C4 = C4×D5⋊C8φ: C4/C2C2 ⊆ Out C4×Dic5160(C4xDic5).43C4320,1013
(C4×Dic5).44C4 = C42.5F5φ: C4/C2C2 ⊆ Out C4×Dic5160(C4xDic5).44C4320,1014
(C4×Dic5).45C4 = C42.11F5φ: C4/C2C2 ⊆ Out C4×Dic5160(C4xDic5).45C4320,1017
(C4×Dic5).46C4 = C2×C4×C5⋊C8φ: C4/C2C2 ⊆ Out C4×Dic5320(C4xDic5).46C4320,1084
(C4×Dic5).47C4 = Dic5.12M4(2)φ: C4/C2C2 ⊆ Out C4×Dic5160(C4xDic5).47C4320,1086
(C4×Dic5).48C4 = C4×C22.F5φ: C4/C2C2 ⊆ Out C4×Dic5160(C4xDic5).48C4320,1088
(C4×Dic5).49C4 = C16×Dic5φ: trivial image320(C4xDic5).49C4320,58
(C4×Dic5).50C4 = D5×C4×C8φ: trivial image160(C4xDic5).50C4320,311
(C4×Dic5).51C4 = C2×C8×Dic5φ: trivial image320(C4xDic5).51C4320,725

׿
×
𝔽