metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: (C2×Q8).2F5, (Q8×C10).2C4, (C4×Dic5).5C4, C5⋊2(C42.3C4), (C2×Dic5).13D4, C2.10(C23⋊F5), C10.19(C23⋊C4), Dic5⋊Q8.2C2, Dic5.D4.2C2, C22.22(C22⋊F5), (C2×Dic10).47C22, (C2×C4).4(C2×F5), (C2×C20).17(C2×C4), (C2×C10).42(C22⋊C4), SmallGroup(320,267)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for (Q8×C10).C4
G = < a,b,c,d | a10=b4=1, c2=d4=b2, ab=ba, ac=ca, dad-1=a3b2, cbc-1=b-1, dbd-1=a5b, dcd-1=b-1c >
Subgroups: 266 in 60 conjugacy classes, 18 normal (14 characteristic)
C1, C2, C2, C4, C22, C5, C8, C2×C4, C2×C4, Q8, C10, C10, C42, C4⋊C4, M4(2), C2×Q8, C2×Q8, Dic5, C20, C2×C10, C4.10D4, C4⋊Q8, C5⋊C8, Dic10, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C5×Q8, C42.3C4, C4×Dic5, C10.D4, C22.F5, C2×Dic10, Q8×C10, Dic5.D4, Dic5⋊Q8, (Q8×C10).C4
Quotients: C1, C2, C4, C22, C2×C4, D4, C22⋊C4, F5, C23⋊C4, C2×F5, C42.3C4, C22⋊F5, C23⋊F5, (Q8×C10).C4
Character table of (Q8×C10).C4
class | 1 | 2A | 2B | 4A | 4B | 4C | 4D | 4E | 4F | 5 | 8A | 8B | 8C | 8D | 10A | 10B | 10C | 20A | 20B | 20C | 20D | 20E | 20F | |
size | 1 | 1 | 2 | 4 | 8 | 20 | 20 | 20 | 20 | 4 | 40 | 40 | 40 | 40 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -i | -i | i | i | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | linear of order 4 |
ρ6 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -i | i | -i | i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ7 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | i | -i | i | -i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | i | i | -i | -i | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | linear of order 4 |
ρ9 | 2 | 2 | 2 | -2 | 0 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | -2 | 0 | 0 | -2 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | -2 | 0 | 2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | -2 | 0 | 0 | -2 | 0 | orthogonal lifted from D4 |
ρ11 | 4 | 4 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | orthogonal lifted from C2×F5 |
ρ12 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23⋊C4 |
ρ13 | 4 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | √5 | 1 | -√5 | -√5 | 1 | √5 | orthogonal lifted from C22⋊F5 |
ρ14 | 4 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -√5 | 1 | √5 | √5 | 1 | -√5 | orthogonal lifted from C22⋊F5 |
ρ15 | 4 | 4 | 4 | 4 | 4 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from F5 |
ρ16 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C42.3C4, Schur index 2 |
ρ17 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C42.3C4, Schur index 2 |
ρ18 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | 2ζ54+2ζ53+1 | √5 | 2ζ54+2ζ52+1 | 2ζ53+2ζ5+1 | -√5 | 2ζ52+2ζ5+1 | complex lifted from C23⋊F5 |
ρ19 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | 2ζ52+2ζ5+1 | √5 | 2ζ53+2ζ5+1 | 2ζ54+2ζ52+1 | -√5 | 2ζ54+2ζ53+1 | complex lifted from C23⋊F5 |
ρ20 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | 2ζ53+2ζ5+1 | -√5 | 2ζ54+2ζ53+1 | 2ζ52+2ζ5+1 | √5 | 2ζ54+2ζ52+1 | complex lifted from C23⋊F5 |
ρ21 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | 2ζ54+2ζ52+1 | -√5 | 2ζ52+2ζ5+1 | 2ζ54+2ζ53+1 | √5 | 2ζ53+2ζ5+1 | complex lifted from C23⋊F5 |
ρ22 | 8 | -8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 2√5 | -2√5 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
ρ23 | 8 | -8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | -2√5 | 2√5 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 40 32 25)(2 36 33 21)(3 37 34 22)(4 38 35 23)(5 39 31 24)(6 14 16 29)(7 15 17 30)(8 11 18 26)(9 12 19 27)(10 13 20 28)(41 80 46 75)(42 71 47 76)(43 72 48 77)(44 73 49 78)(45 74 50 79)(51 63 56 68)(52 64 57 69)(53 65 58 70)(54 66 59 61)(55 67 60 62)
(1 17 32 7)(2 18 33 8)(3 19 34 9)(4 20 35 10)(5 16 31 6)(11 21 26 36)(12 22 27 37)(13 23 28 38)(14 24 29 39)(15 25 30 40)(41 67 46 62)(42 68 47 63)(43 69 48 64)(44 70 49 65)(45 61 50 66)(51 71 56 76)(52 72 57 77)(53 73 58 78)(54 74 59 79)(55 75 60 80)
(1 46 28 68 32 41 13 63)(2 48 27 66 33 43 12 61)(3 50 26 64 34 45 11 69)(4 42 30 62 35 47 15 67)(5 44 29 70 31 49 14 65)(6 53 39 73 16 58 24 78)(7 55 38 71 17 60 23 76)(8 57 37 79 18 52 22 74)(9 59 36 77 19 54 21 72)(10 51 40 75 20 56 25 80)
G:=sub<Sym(80)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,40,32,25)(2,36,33,21)(3,37,34,22)(4,38,35,23)(5,39,31,24)(6,14,16,29)(7,15,17,30)(8,11,18,26)(9,12,19,27)(10,13,20,28)(41,80,46,75)(42,71,47,76)(43,72,48,77)(44,73,49,78)(45,74,50,79)(51,63,56,68)(52,64,57,69)(53,65,58,70)(54,66,59,61)(55,67,60,62), (1,17,32,7)(2,18,33,8)(3,19,34,9)(4,20,35,10)(5,16,31,6)(11,21,26,36)(12,22,27,37)(13,23,28,38)(14,24,29,39)(15,25,30,40)(41,67,46,62)(42,68,47,63)(43,69,48,64)(44,70,49,65)(45,61,50,66)(51,71,56,76)(52,72,57,77)(53,73,58,78)(54,74,59,79)(55,75,60,80), (1,46,28,68,32,41,13,63)(2,48,27,66,33,43,12,61)(3,50,26,64,34,45,11,69)(4,42,30,62,35,47,15,67)(5,44,29,70,31,49,14,65)(6,53,39,73,16,58,24,78)(7,55,38,71,17,60,23,76)(8,57,37,79,18,52,22,74)(9,59,36,77,19,54,21,72)(10,51,40,75,20,56,25,80)>;
G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,40,32,25)(2,36,33,21)(3,37,34,22)(4,38,35,23)(5,39,31,24)(6,14,16,29)(7,15,17,30)(8,11,18,26)(9,12,19,27)(10,13,20,28)(41,80,46,75)(42,71,47,76)(43,72,48,77)(44,73,49,78)(45,74,50,79)(51,63,56,68)(52,64,57,69)(53,65,58,70)(54,66,59,61)(55,67,60,62), (1,17,32,7)(2,18,33,8)(3,19,34,9)(4,20,35,10)(5,16,31,6)(11,21,26,36)(12,22,27,37)(13,23,28,38)(14,24,29,39)(15,25,30,40)(41,67,46,62)(42,68,47,63)(43,69,48,64)(44,70,49,65)(45,61,50,66)(51,71,56,76)(52,72,57,77)(53,73,58,78)(54,74,59,79)(55,75,60,80), (1,46,28,68,32,41,13,63)(2,48,27,66,33,43,12,61)(3,50,26,64,34,45,11,69)(4,42,30,62,35,47,15,67)(5,44,29,70,31,49,14,65)(6,53,39,73,16,58,24,78)(7,55,38,71,17,60,23,76)(8,57,37,79,18,52,22,74)(9,59,36,77,19,54,21,72)(10,51,40,75,20,56,25,80) );
G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,40,32,25),(2,36,33,21),(3,37,34,22),(4,38,35,23),(5,39,31,24),(6,14,16,29),(7,15,17,30),(8,11,18,26),(9,12,19,27),(10,13,20,28),(41,80,46,75),(42,71,47,76),(43,72,48,77),(44,73,49,78),(45,74,50,79),(51,63,56,68),(52,64,57,69),(53,65,58,70),(54,66,59,61),(55,67,60,62)], [(1,17,32,7),(2,18,33,8),(3,19,34,9),(4,20,35,10),(5,16,31,6),(11,21,26,36),(12,22,27,37),(13,23,28,38),(14,24,29,39),(15,25,30,40),(41,67,46,62),(42,68,47,63),(43,69,48,64),(44,70,49,65),(45,61,50,66),(51,71,56,76),(52,72,57,77),(53,73,58,78),(54,74,59,79),(55,75,60,80)], [(1,46,28,68,32,41,13,63),(2,48,27,66,33,43,12,61),(3,50,26,64,34,45,11,69),(4,42,30,62,35,47,15,67),(5,44,29,70,31,49,14,65),(6,53,39,73,16,58,24,78),(7,55,38,71,17,60,23,76),(8,57,37,79,18,52,22,74),(9,59,36,77,19,54,21,72),(10,51,40,75,20,56,25,80)]])
Matrix representation of (Q8×C10).C4 ►in GL8(𝔽41)
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
40 | 40 | 40 | 40 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 40 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 32 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 9 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 32 |
0 | 0 | 0 | 0 | 0 | 0 | 32 | 0 |
7 | 0 | 14 | 14 | 0 | 0 | 0 | 0 |
14 | 14 | 0 | 7 | 0 | 0 | 0 | 0 |
27 | 34 | 27 | 0 | 0 | 0 | 0 | 0 |
34 | 7 | 7 | 34 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 32 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 9 | 0 | 0 |
G:=sub<GL(8,GF(41))| [0,40,1,0,0,0,0,0,0,40,0,1,0,0,0,0,0,40,0,0,0,0,0,0,1,40,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,32,0,0,0,0,0,0,32,0],[7,14,27,34,0,0,0,0,0,14,34,7,0,0,0,0,14,0,27,7,0,0,0,0,14,7,0,34,0,0,0,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,9,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0] >;
(Q8×C10).C4 in GAP, Magma, Sage, TeX
(Q_8\times C_{10}).C_4
% in TeX
G:=Group("(Q8xC10).C4");
// GroupNames label
G:=SmallGroup(320,267);
// by ID
G=gap.SmallGroup(320,267);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,28,141,232,219,184,1571,570,297,136,1684,6278,3156]);
// Polycyclic
G:=Group<a,b,c,d|a^10=b^4=1,c^2=d^4=b^2,a*b=b*a,a*c=c*a,d*a*d^-1=a^3*b^2,c*b*c^-1=b^-1,d*b*d^-1=a^5*b,d*c*d^-1=b^-1*c>;
// generators/relations
Export