Copied to
clipboard

G = D5×C8⋊C4order 320 = 26·5

Direct product of D5 and C8⋊C4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D5×C8⋊C4, D10.17C42, C42.181D10, D10.12M4(2), Dic5.17C42, (C8×D5)⋊9C4, C815(C4×D5), C4026(C2×C4), C408C424C2, C2.9(D5×C42), (C2×C8).269D10, C2.1(D5×M4(2)), C10.28(C2×C42), (C4×Dic5).17C4, (D5×C42).13C2, (C2×C40).225C22, (C4×C20).226C22, (C2×C20).810C23, C20.184(C22×C4), C42.D517C2, C10.49(C2×M4(2)), (C4×Dic5).297C22, C54(C2×C8⋊C4), C4.99(C2×C4×D5), (D5×C2×C8).26C2, (C2×C4×D5).18C4, (C5×C8⋊C4)⋊6C2, C52C831(C2×C4), C22.39(C2×C4×D5), (C4×D5).99(C2×C4), (C2×C4).126(C4×D5), (C2×C20).318(C2×C4), (C2×C4×D5).418C22, (C2×C4).752(C22×D5), (C2×C10).166(C22×C4), (C2×C52C8).302C22, (C2×Dic5).203(C2×C4), (C22×D5).138(C2×C4), SmallGroup(320,331)

Series: Derived Chief Lower central Upper central

C1C10 — D5×C8⋊C4
C1C5C10C20C2×C20C2×C4×D5D5×C42 — D5×C8⋊C4
C5C10 — D5×C8⋊C4
C1C2×C4C8⋊C4

Generators and relations for D5×C8⋊C4
 G = < a,b,c,d | a5=b2=c8=d4=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c5 >

Subgroups: 398 in 146 conjugacy classes, 83 normal (19 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C5, C8, C8, C2×C4, C2×C4, C2×C4, C23, D5, C10, C10, C42, C42, C2×C8, C2×C8, C22×C4, Dic5, Dic5, C20, C20, D10, C2×C10, C8⋊C4, C8⋊C4, C2×C42, C22×C8, C52C8, C40, C4×D5, C4×D5, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C22×D5, C2×C8⋊C4, C8×D5, C2×C52C8, C4×Dic5, C4×Dic5, C4×C20, C2×C40, C2×C4×D5, C2×C4×D5, C42.D5, C408C4, C5×C8⋊C4, D5×C42, D5×C2×C8, D5×C8⋊C4
Quotients: C1, C2, C4, C22, C2×C4, C23, D5, C42, M4(2), C22×C4, D10, C8⋊C4, C2×C42, C2×M4(2), C4×D5, C22×D5, C2×C8⋊C4, C2×C4×D5, D5×C42, D5×M4(2), D5×C8⋊C4

Smallest permutation representation of D5×C8⋊C4
On 160 points
Generators in S160
(1 106 26 57 70)(2 107 27 58 71)(3 108 28 59 72)(4 109 29 60 65)(5 110 30 61 66)(6 111 31 62 67)(7 112 32 63 68)(8 105 25 64 69)(9 92 24 52 79)(10 93 17 53 80)(11 94 18 54 73)(12 95 19 55 74)(13 96 20 56 75)(14 89 21 49 76)(15 90 22 50 77)(16 91 23 51 78)(33 134 138 99 147)(34 135 139 100 148)(35 136 140 101 149)(36 129 141 102 150)(37 130 142 103 151)(38 131 143 104 152)(39 132 144 97 145)(40 133 137 98 146)(41 116 123 81 154)(42 117 124 82 155)(43 118 125 83 156)(44 119 126 84 157)(45 120 127 85 158)(46 113 128 86 159)(47 114 121 87 160)(48 115 122 88 153)
(1 140)(2 141)(3 142)(4 143)(5 144)(6 137)(7 138)(8 139)(9 125)(10 126)(11 127)(12 128)(13 121)(14 122)(15 123)(16 124)(17 44)(18 45)(19 46)(20 47)(21 48)(22 41)(23 42)(24 43)(25 34)(26 35)(27 36)(28 37)(29 38)(30 39)(31 40)(32 33)(49 153)(50 154)(51 155)(52 156)(53 157)(54 158)(55 159)(56 160)(57 149)(58 150)(59 151)(60 152)(61 145)(62 146)(63 147)(64 148)(65 104)(66 97)(67 98)(68 99)(69 100)(70 101)(71 102)(72 103)(73 85)(74 86)(75 87)(76 88)(77 81)(78 82)(79 83)(80 84)(89 115)(90 116)(91 117)(92 118)(93 119)(94 120)(95 113)(96 114)(105 135)(106 136)(107 129)(108 130)(109 131)(110 132)(111 133)(112 134)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)
(1 11 97 81)(2 16 98 86)(3 13 99 83)(4 10 100 88)(5 15 101 85)(6 12 102 82)(7 9 103 87)(8 14 104 84)(17 34 48 29)(18 39 41 26)(19 36 42 31)(20 33 43 28)(21 38 44 25)(22 35 45 30)(23 40 46 27)(24 37 47 32)(49 131 119 64)(50 136 120 61)(51 133 113 58)(52 130 114 63)(53 135 115 60)(54 132 116 57)(55 129 117 62)(56 134 118 59)(65 80 139 122)(66 77 140 127)(67 74 141 124)(68 79 142 121)(69 76 143 126)(70 73 144 123)(71 78 137 128)(72 75 138 125)(89 152 157 105)(90 149 158 110)(91 146 159 107)(92 151 160 112)(93 148 153 109)(94 145 154 106)(95 150 155 111)(96 147 156 108)

G:=sub<Sym(160)| (1,106,26,57,70)(2,107,27,58,71)(3,108,28,59,72)(4,109,29,60,65)(5,110,30,61,66)(6,111,31,62,67)(7,112,32,63,68)(8,105,25,64,69)(9,92,24,52,79)(10,93,17,53,80)(11,94,18,54,73)(12,95,19,55,74)(13,96,20,56,75)(14,89,21,49,76)(15,90,22,50,77)(16,91,23,51,78)(33,134,138,99,147)(34,135,139,100,148)(35,136,140,101,149)(36,129,141,102,150)(37,130,142,103,151)(38,131,143,104,152)(39,132,144,97,145)(40,133,137,98,146)(41,116,123,81,154)(42,117,124,82,155)(43,118,125,83,156)(44,119,126,84,157)(45,120,127,85,158)(46,113,128,86,159)(47,114,121,87,160)(48,115,122,88,153), (1,140)(2,141)(3,142)(4,143)(5,144)(6,137)(7,138)(8,139)(9,125)(10,126)(11,127)(12,128)(13,121)(14,122)(15,123)(16,124)(17,44)(18,45)(19,46)(20,47)(21,48)(22,41)(23,42)(24,43)(25,34)(26,35)(27,36)(28,37)(29,38)(30,39)(31,40)(32,33)(49,153)(50,154)(51,155)(52,156)(53,157)(54,158)(55,159)(56,160)(57,149)(58,150)(59,151)(60,152)(61,145)(62,146)(63,147)(64,148)(65,104)(66,97)(67,98)(68,99)(69,100)(70,101)(71,102)(72,103)(73,85)(74,86)(75,87)(76,88)(77,81)(78,82)(79,83)(80,84)(89,115)(90,116)(91,117)(92,118)(93,119)(94,120)(95,113)(96,114)(105,135)(106,136)(107,129)(108,130)(109,131)(110,132)(111,133)(112,134), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160), (1,11,97,81)(2,16,98,86)(3,13,99,83)(4,10,100,88)(5,15,101,85)(6,12,102,82)(7,9,103,87)(8,14,104,84)(17,34,48,29)(18,39,41,26)(19,36,42,31)(20,33,43,28)(21,38,44,25)(22,35,45,30)(23,40,46,27)(24,37,47,32)(49,131,119,64)(50,136,120,61)(51,133,113,58)(52,130,114,63)(53,135,115,60)(54,132,116,57)(55,129,117,62)(56,134,118,59)(65,80,139,122)(66,77,140,127)(67,74,141,124)(68,79,142,121)(69,76,143,126)(70,73,144,123)(71,78,137,128)(72,75,138,125)(89,152,157,105)(90,149,158,110)(91,146,159,107)(92,151,160,112)(93,148,153,109)(94,145,154,106)(95,150,155,111)(96,147,156,108)>;

G:=Group( (1,106,26,57,70)(2,107,27,58,71)(3,108,28,59,72)(4,109,29,60,65)(5,110,30,61,66)(6,111,31,62,67)(7,112,32,63,68)(8,105,25,64,69)(9,92,24,52,79)(10,93,17,53,80)(11,94,18,54,73)(12,95,19,55,74)(13,96,20,56,75)(14,89,21,49,76)(15,90,22,50,77)(16,91,23,51,78)(33,134,138,99,147)(34,135,139,100,148)(35,136,140,101,149)(36,129,141,102,150)(37,130,142,103,151)(38,131,143,104,152)(39,132,144,97,145)(40,133,137,98,146)(41,116,123,81,154)(42,117,124,82,155)(43,118,125,83,156)(44,119,126,84,157)(45,120,127,85,158)(46,113,128,86,159)(47,114,121,87,160)(48,115,122,88,153), (1,140)(2,141)(3,142)(4,143)(5,144)(6,137)(7,138)(8,139)(9,125)(10,126)(11,127)(12,128)(13,121)(14,122)(15,123)(16,124)(17,44)(18,45)(19,46)(20,47)(21,48)(22,41)(23,42)(24,43)(25,34)(26,35)(27,36)(28,37)(29,38)(30,39)(31,40)(32,33)(49,153)(50,154)(51,155)(52,156)(53,157)(54,158)(55,159)(56,160)(57,149)(58,150)(59,151)(60,152)(61,145)(62,146)(63,147)(64,148)(65,104)(66,97)(67,98)(68,99)(69,100)(70,101)(71,102)(72,103)(73,85)(74,86)(75,87)(76,88)(77,81)(78,82)(79,83)(80,84)(89,115)(90,116)(91,117)(92,118)(93,119)(94,120)(95,113)(96,114)(105,135)(106,136)(107,129)(108,130)(109,131)(110,132)(111,133)(112,134), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160), (1,11,97,81)(2,16,98,86)(3,13,99,83)(4,10,100,88)(5,15,101,85)(6,12,102,82)(7,9,103,87)(8,14,104,84)(17,34,48,29)(18,39,41,26)(19,36,42,31)(20,33,43,28)(21,38,44,25)(22,35,45,30)(23,40,46,27)(24,37,47,32)(49,131,119,64)(50,136,120,61)(51,133,113,58)(52,130,114,63)(53,135,115,60)(54,132,116,57)(55,129,117,62)(56,134,118,59)(65,80,139,122)(66,77,140,127)(67,74,141,124)(68,79,142,121)(69,76,143,126)(70,73,144,123)(71,78,137,128)(72,75,138,125)(89,152,157,105)(90,149,158,110)(91,146,159,107)(92,151,160,112)(93,148,153,109)(94,145,154,106)(95,150,155,111)(96,147,156,108) );

G=PermutationGroup([[(1,106,26,57,70),(2,107,27,58,71),(3,108,28,59,72),(4,109,29,60,65),(5,110,30,61,66),(6,111,31,62,67),(7,112,32,63,68),(8,105,25,64,69),(9,92,24,52,79),(10,93,17,53,80),(11,94,18,54,73),(12,95,19,55,74),(13,96,20,56,75),(14,89,21,49,76),(15,90,22,50,77),(16,91,23,51,78),(33,134,138,99,147),(34,135,139,100,148),(35,136,140,101,149),(36,129,141,102,150),(37,130,142,103,151),(38,131,143,104,152),(39,132,144,97,145),(40,133,137,98,146),(41,116,123,81,154),(42,117,124,82,155),(43,118,125,83,156),(44,119,126,84,157),(45,120,127,85,158),(46,113,128,86,159),(47,114,121,87,160),(48,115,122,88,153)], [(1,140),(2,141),(3,142),(4,143),(5,144),(6,137),(7,138),(8,139),(9,125),(10,126),(11,127),(12,128),(13,121),(14,122),(15,123),(16,124),(17,44),(18,45),(19,46),(20,47),(21,48),(22,41),(23,42),(24,43),(25,34),(26,35),(27,36),(28,37),(29,38),(30,39),(31,40),(32,33),(49,153),(50,154),(51,155),(52,156),(53,157),(54,158),(55,159),(56,160),(57,149),(58,150),(59,151),(60,152),(61,145),(62,146),(63,147),(64,148),(65,104),(66,97),(67,98),(68,99),(69,100),(70,101),(71,102),(72,103),(73,85),(74,86),(75,87),(76,88),(77,81),(78,82),(79,83),(80,84),(89,115),(90,116),(91,117),(92,118),(93,119),(94,120),(95,113),(96,114),(105,135),(106,136),(107,129),(108,130),(109,131),(110,132),(111,133),(112,134)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160)], [(1,11,97,81),(2,16,98,86),(3,13,99,83),(4,10,100,88),(5,15,101,85),(6,12,102,82),(7,9,103,87),(8,14,104,84),(17,34,48,29),(18,39,41,26),(19,36,42,31),(20,33,43,28),(21,38,44,25),(22,35,45,30),(23,40,46,27),(24,37,47,32),(49,131,119,64),(50,136,120,61),(51,133,113,58),(52,130,114,63),(53,135,115,60),(54,132,116,57),(55,129,117,62),(56,134,118,59),(65,80,139,122),(66,77,140,127),(67,74,141,124),(68,79,142,121),(69,76,143,126),(70,73,144,123),(71,78,137,128),(72,75,138,125),(89,152,157,105),(90,149,158,110),(91,146,159,107),(92,151,160,112),(93,148,153,109),(94,145,154,106),(95,150,155,111),(96,147,156,108)]])

80 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G4H4I4J4K4L4M4N4O4P5A5B8A···8H8I···8P10A···10F20A···20H20I···20P40A···40P
order122222224444444444444444558···88···810···1020···2020···2040···40
size1111555511112222555510101010222···210···102···22···24···44···4

80 irreducible representations

dim1111111112222224
type+++++++++
imageC1C2C2C2C2C2C4C4C4D5M4(2)D10D10C4×D5C4×D5D5×M4(2)
kernelD5×C8⋊C4C42.D5C408C4C5×C8⋊C4D5×C42D5×C2×C8C8×D5C4×Dic5C2×C4×D5C8⋊C4D10C42C2×C8C8C2×C4C2
# reps112112164428241688

Matrix representation of D5×C8⋊C4 in GL4(𝔽41) generated by

40100
53500
0010
0001
,
1000
364000
0010
0001
,
1000
0100
0097
001932
,
9000
0900
003440
0097
G:=sub<GL(4,GF(41))| [40,5,0,0,1,35,0,0,0,0,1,0,0,0,0,1],[1,36,0,0,0,40,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,9,19,0,0,7,32],[9,0,0,0,0,9,0,0,0,0,34,9,0,0,40,7] >;

D5×C8⋊C4 in GAP, Magma, Sage, TeX

D_5\times C_8\rtimes C_4
% in TeX

G:=Group("D5xC8:C4");
// GroupNames label

G:=SmallGroup(320,331);
// by ID

G=gap.SmallGroup(320,331);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,120,387,58,136,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^2=c^8=d^4=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^5>;
// generators/relations

׿
×
𝔽