Extensions 1→N→G→Q→1 with N=C4 and Q=C4⋊Dic5

Direct product G=N×Q with N=C4 and Q=C4⋊Dic5
dρLabelID
C4×C4⋊Dic5320C4xC4:Dic5320,561

Semidirect products G=N:Q with N=C4 and Q=C4⋊Dic5
extensionφ:Q→Aut NdρLabelID
C41(C4⋊Dic5) = C206(C4⋊C4)φ: C4⋊Dic5/C2×Dic5C2 ⊆ Aut C4320C4:1(C4:Dic5)320,612
C42(C4⋊Dic5) = C428Dic5φ: C4⋊Dic5/C2×C20C2 ⊆ Aut C4320C4:2(C4:Dic5)320,562

Non-split extensions G=N.Q with N=C4 and Q=C4⋊Dic5
extensionφ:Q→Aut NdρLabelID
C4.1(C4⋊Dic5) = C20.31C42φ: C4⋊Dic5/C2×Dic5C2 ⊆ Aut C4320C4.1(C4:Dic5)320,87
C4.2(C4⋊Dic5) = C20.32C42φ: C4⋊Dic5/C2×Dic5C2 ⊆ Aut C480C4.2(C4:Dic5)320,90
C4.3(C4⋊Dic5) = M4(2)⋊Dic5φ: C4⋊Dic5/C2×Dic5C2 ⊆ Aut C4160C4.3(C4:Dic5)320,112
C4.4(C4⋊Dic5) = M4(2)⋊4Dic5φ: C4⋊Dic5/C2×Dic5C2 ⊆ Aut C4804C4.4(C4:Dic5)320,117
C4.5(C4⋊Dic5) = C42.43D10φ: C4⋊Dic5/C2×Dic5C2 ⊆ Aut C4160C4.5(C4:Dic5)320,626
C4.6(C4⋊Dic5) = C23.47D20φ: C4⋊Dic5/C2×Dic5C2 ⊆ Aut C4160C4.6(C4:Dic5)320,748
C4.7(C4⋊Dic5) = M4(2).Dic5φ: C4⋊Dic5/C2×Dic5C2 ⊆ Aut C4804C4.7(C4:Dic5)320,752
C4.8(C4⋊Dic5) = C8013C4φ: C4⋊Dic5/C2×C20C2 ⊆ Aut C4320C4.8(C4:Dic5)320,62
C4.9(C4⋊Dic5) = C8014C4φ: C4⋊Dic5/C2×C20C2 ⊆ Aut C4320C4.9(C4:Dic5)320,63
C4.10(C4⋊Dic5) = C80.6C4φ: C4⋊Dic5/C2×C20C2 ⊆ Aut C41602C4.10(C4:Dic5)320,64
C4.11(C4⋊Dic5) = C40.Q8φ: C4⋊Dic5/C2×C20C2 ⊆ Aut C4804C4.11(C4:Dic5)320,71
C4.12(C4⋊Dic5) = C421Dic5φ: C4⋊Dic5/C2×C20C2 ⊆ Aut C4804C4.12(C4:Dic5)320,89
C4.13(C4⋊Dic5) = (C2×C40)⋊C4φ: C4⋊Dic5/C2×C20C2 ⊆ Aut C4804C4.13(C4:Dic5)320,114
C4.14(C4⋊Dic5) = C2013M4(2)φ: C4⋊Dic5/C2×C20C2 ⊆ Aut C4160C4.14(C4:Dic5)320,551
C4.15(C4⋊Dic5) = C429Dic5φ: C4⋊Dic5/C2×C20C2 ⊆ Aut C4320C4.15(C4:Dic5)320,563
C4.16(C4⋊Dic5) = C2×C406C4φ: C4⋊Dic5/C2×C20C2 ⊆ Aut C4320C4.16(C4:Dic5)320,731
C4.17(C4⋊Dic5) = C2×C405C4φ: C4⋊Dic5/C2×C20C2 ⊆ Aut C4320C4.17(C4:Dic5)320,732
C4.18(C4⋊Dic5) = C203C16central extension (φ=1)320C4.18(C4:Dic5)320,20
C4.19(C4⋊Dic5) = C40.7C8central extension (φ=1)802C4.19(C4:Dic5)320,21
C4.20(C4⋊Dic5) = C426Dic5central extension (φ=1)80C4.20(C4:Dic5)320,81
C4.21(C4⋊Dic5) = (C2×C40)⋊15C4central extension (φ=1)320C4.21(C4:Dic5)320,108
C4.22(C4⋊Dic5) = C2×C203C8central extension (φ=1)320C4.22(C4:Dic5)320,550
C4.23(C4⋊Dic5) = C23.22D20central extension (φ=1)160C4.23(C4:Dic5)320,733
C4.24(C4⋊Dic5) = C2×C40.6C4central extension (φ=1)160C4.24(C4:Dic5)320,734

׿
×
𝔽