Extensions 1→N→G→Q→1 with N=Q8 and Q=C2×F5

Direct product G=N×Q with N=Q8 and Q=C2×F5
dρLabelID
C2×Q8×F580C2xQ8xF5320,1599

Semidirect products G=N:Q with N=Q8 and Q=C2×F5
extensionφ:Q→Out NdρLabelID
Q81(C2×F5) = SD16×F5φ: C2×F5/F5C2 ⊆ Out Q8408Q8:1(C2xF5)320,1072
Q82(C2×F5) = SD16⋊F5φ: C2×F5/F5C2 ⊆ Out Q8408Q8:2(C2xF5)320,1073
Q83(C2×F5) = C2×Q8⋊F5φ: C2×F5/D10C2 ⊆ Out Q880Q8:3(C2xF5)320,1119
Q84(C2×F5) = C2×Q82F5φ: C2×F5/D10C2 ⊆ Out Q880Q8:4(C2xF5)320,1121
Q85(C2×F5) = D5⋊C4≀C2φ: C2×F5/D10C2 ⊆ Out Q8408Q8:5(C2xF5)320,1130
Q86(C2×F5) = C4○D4⋊F5φ: C2×F5/D10C2 ⊆ Out Q8408Q8:6(C2xF5)320,1131
Q87(C2×F5) = C4○D4×F5φ: trivial image408Q8:7(C2xF5)320,1603
Q88(C2×F5) = D5.2+ 1+4φ: trivial image408Q8:8(C2xF5)320,1604

Non-split extensions G=N.Q with N=Q8 and Q=C2×F5
extensionφ:Q→Out NdρLabelID
Q8.1(C2×F5) = SD163F5φ: C2×F5/F5C2 ⊆ Out Q8808Q8.1(C2xF5)320,1074
Q8.2(C2×F5) = SD162F5φ: C2×F5/F5C2 ⊆ Out Q8808Q8.2(C2xF5)320,1075
Q8.3(C2×F5) = Q16×F5φ: C2×F5/F5C2 ⊆ Out Q8808-Q8.3(C2xF5)320,1076
Q8.4(C2×F5) = Dic20⋊C4φ: C2×F5/F5C2 ⊆ Out Q8808-Q8.4(C2xF5)320,1077
Q8.5(C2×F5) = Q165F5φ: C2×F5/F5C2 ⊆ Out Q8808+Q8.5(C2xF5)320,1078
Q8.6(C2×F5) = Q16⋊F5φ: C2×F5/F5C2 ⊆ Out Q8808+Q8.6(C2xF5)320,1079
Q8.7(C2×F5) = (C2×Q8)⋊4F5φ: C2×F5/D10C2 ⊆ Out Q8808-Q8.7(C2xF5)320,1120
Q8.8(C2×F5) = (C2×Q8)⋊6F5φ: C2×F5/D10C2 ⊆ Out Q8808+Q8.8(C2xF5)320,1122
Q8.9(C2×F5) = C4○D20⋊C4φ: C2×F5/D10C2 ⊆ Out Q8808Q8.9(C2xF5)320,1132
Q8.10(C2×F5) = D4⋊F5⋊C2φ: C2×F5/D10C2 ⊆ Out Q8808Q8.10(C2xF5)320,1133
Q8.11(C2×F5) = C2×Q8.F5φ: trivial image160Q8.11(C2xF5)320,1597
Q8.12(C2×F5) = Dic5.20C24φ: trivial image808+Q8.12(C2xF5)320,1598
Q8.13(C2×F5) = D5.2- 1+4φ: trivial image808-Q8.13(C2xF5)320,1600
Q8.14(C2×F5) = Dic5.21C24φ: trivial image808Q8.14(C2xF5)320,1601
Q8.15(C2×F5) = Dic5.22C24φ: trivial image808Q8.15(C2xF5)320,1602

׿
×
𝔽