metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: SD16⋊3F5, C5⋊C8.5D4, D4⋊D5⋊3C4, C5⋊2(C8○D8), (C8×F5)⋊5C2, C40⋊C2⋊4C4, C5⋊Q16⋊1C4, D4.F5⋊3C2, Q8.F5⋊1C2, D4.5(C2×F5), C8.17(C2×F5), C2.21(D4×F5), Q8.1(C2×F5), C40.16(C2×C4), D4⋊F5⋊3C2, Q8⋊2F5⋊1C2, (C5×SD16)⋊4C4, D20.3(C2×C4), C10.20(C4×D4), C40.C4⋊4C2, C4.7(C22×F5), C20.7(C22×C4), D10.3(C4○D4), C4.F5.3C22, D5⋊C8.12C22, Dic10.3(C2×C4), Dic5.74(C2×D4), (C8×D5).28C22, (C4×D5).29C23, (C4×F5).12C22, SD16⋊3D5.2C2, D4⋊2D5.6C22, Q8⋊2D5.4C22, C5⋊2C8.9(C2×C4), (C5×D4).5(C2×C4), (C5×Q8).1(C2×C4), SmallGroup(320,1074)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for SD16⋊3F5
G = < a,b,c,d | a8=b2=c5=d4=1, bab=a3, ac=ca, ad=da, bc=cb, dbd-1=a2b, dcd-1=c3 >
Subgroups: 402 in 106 conjugacy classes, 40 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C5, C8, C8, C2×C4, D4, D4, Q8, Q8, D5, C10, C10, C42, C2×C8, M4(2), D8, SD16, SD16, Q16, C4○D4, Dic5, Dic5, C20, C20, F5, D10, D10, C2×C10, C4×C8, C4≀C2, C8.C4, C8○D4, C4○D8, C5⋊2C8, C40, C5⋊C8, C5⋊C8, Dic10, C4×D5, C4×D5, D20, D20, C2×Dic5, C5⋊D4, C5×D4, C5×Q8, C2×F5, C8○D8, C8×D5, C40⋊C2, D4⋊D5, C5⋊Q16, C5×SD16, D5⋊C8, D5⋊C8, C4.F5, C4.F5, C4×F5, C2×C5⋊C8, C22.F5, D4⋊2D5, Q8⋊2D5, C8×F5, C40.C4, D4⋊F5, Q8⋊2F5, SD16⋊3D5, D4.F5, Q8.F5, SD16⋊3F5
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22×C4, C2×D4, C4○D4, F5, C4×D4, C2×F5, C8○D8, C22×F5, D4×F5, SD16⋊3F5
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)
(1 59)(2 62)(3 57)(4 60)(5 63)(6 58)(7 61)(8 64)(9 28)(10 31)(11 26)(12 29)(13 32)(14 27)(15 30)(16 25)(17 36)(18 39)(19 34)(20 37)(21 40)(22 35)(23 38)(24 33)(41 77)(42 80)(43 75)(44 78)(45 73)(46 76)(47 79)(48 74)(49 69)(50 72)(51 67)(52 70)(53 65)(54 68)(55 71)(56 66)
(1 12 33 79 71)(2 13 34 80 72)(3 14 35 73 65)(4 15 36 74 66)(5 16 37 75 67)(6 9 38 76 68)(7 10 39 77 69)(8 11 40 78 70)(17 48 56 60 30)(18 41 49 61 31)(19 42 50 62 32)(20 43 51 63 25)(21 44 52 64 26)(22 45 53 57 27)(23 46 54 58 28)(24 47 55 59 29)
(9 38 68 76)(10 39 69 77)(11 40 70 78)(12 33 71 79)(13 34 72 80)(14 35 65 73)(15 36 66 74)(16 37 67 75)(17 50 44 28)(18 51 45 29)(19 52 46 30)(20 53 47 31)(21 54 48 32)(22 55 41 25)(23 56 42 26)(24 49 43 27)(57 59 61 63)(58 60 62 64)
G:=sub<Sym(80)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80), (1,59)(2,62)(3,57)(4,60)(5,63)(6,58)(7,61)(8,64)(9,28)(10,31)(11,26)(12,29)(13,32)(14,27)(15,30)(16,25)(17,36)(18,39)(19,34)(20,37)(21,40)(22,35)(23,38)(24,33)(41,77)(42,80)(43,75)(44,78)(45,73)(46,76)(47,79)(48,74)(49,69)(50,72)(51,67)(52,70)(53,65)(54,68)(55,71)(56,66), (1,12,33,79,71)(2,13,34,80,72)(3,14,35,73,65)(4,15,36,74,66)(5,16,37,75,67)(6,9,38,76,68)(7,10,39,77,69)(8,11,40,78,70)(17,48,56,60,30)(18,41,49,61,31)(19,42,50,62,32)(20,43,51,63,25)(21,44,52,64,26)(22,45,53,57,27)(23,46,54,58,28)(24,47,55,59,29), (9,38,68,76)(10,39,69,77)(11,40,70,78)(12,33,71,79)(13,34,72,80)(14,35,65,73)(15,36,66,74)(16,37,67,75)(17,50,44,28)(18,51,45,29)(19,52,46,30)(20,53,47,31)(21,54,48,32)(22,55,41,25)(23,56,42,26)(24,49,43,27)(57,59,61,63)(58,60,62,64)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80), (1,59)(2,62)(3,57)(4,60)(5,63)(6,58)(7,61)(8,64)(9,28)(10,31)(11,26)(12,29)(13,32)(14,27)(15,30)(16,25)(17,36)(18,39)(19,34)(20,37)(21,40)(22,35)(23,38)(24,33)(41,77)(42,80)(43,75)(44,78)(45,73)(46,76)(47,79)(48,74)(49,69)(50,72)(51,67)(52,70)(53,65)(54,68)(55,71)(56,66), (1,12,33,79,71)(2,13,34,80,72)(3,14,35,73,65)(4,15,36,74,66)(5,16,37,75,67)(6,9,38,76,68)(7,10,39,77,69)(8,11,40,78,70)(17,48,56,60,30)(18,41,49,61,31)(19,42,50,62,32)(20,43,51,63,25)(21,44,52,64,26)(22,45,53,57,27)(23,46,54,58,28)(24,47,55,59,29), (9,38,68,76)(10,39,69,77)(11,40,70,78)(12,33,71,79)(13,34,72,80)(14,35,65,73)(15,36,66,74)(16,37,67,75)(17,50,44,28)(18,51,45,29)(19,52,46,30)(20,53,47,31)(21,54,48,32)(22,55,41,25)(23,56,42,26)(24,49,43,27)(57,59,61,63)(58,60,62,64) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80)], [(1,59),(2,62),(3,57),(4,60),(5,63),(6,58),(7,61),(8,64),(9,28),(10,31),(11,26),(12,29),(13,32),(14,27),(15,30),(16,25),(17,36),(18,39),(19,34),(20,37),(21,40),(22,35),(23,38),(24,33),(41,77),(42,80),(43,75),(44,78),(45,73),(46,76),(47,79),(48,74),(49,69),(50,72),(51,67),(52,70),(53,65),(54,68),(55,71),(56,66)], [(1,12,33,79,71),(2,13,34,80,72),(3,14,35,73,65),(4,15,36,74,66),(5,16,37,75,67),(6,9,38,76,68),(7,10,39,77,69),(8,11,40,78,70),(17,48,56,60,30),(18,41,49,61,31),(19,42,50,62,32),(20,43,51,63,25),(21,44,52,64,26),(22,45,53,57,27),(23,46,54,58,28),(24,47,55,59,29)], [(9,38,68,76),(10,39,69,77),(11,40,70,78),(12,33,71,79),(13,34,72,80),(14,35,65,73),(15,36,66,74),(16,37,67,75),(17,50,44,28),(18,51,45,29),(19,52,46,30),(20,53,47,31),(21,54,48,32),(22,55,41,25),(23,56,42,26),(24,49,43,27),(57,59,61,63),(58,60,62,64)]])
35 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 5 | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | 8K | 8L | 8M | 8N | 10A | 10B | 20A | 20B | 40A | 40B |
order | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 10 | 10 | 20 | 20 | 40 | 40 |
size | 1 | 1 | 4 | 10 | 20 | 2 | 4 | 5 | 5 | 10 | 10 | 10 | 10 | 20 | 4 | 2 | 2 | 5 | 5 | 5 | 5 | 10 | 10 | 10 | 10 | 20 | 20 | 20 | 20 | 4 | 16 | 8 | 16 | 8 | 8 |
35 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 8 | 8 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | C4 | D4 | C4○D4 | C8○D8 | F5 | C2×F5 | C2×F5 | C2×F5 | D4×F5 | SD16⋊3F5 |
kernel | SD16⋊3F5 | C8×F5 | C40.C4 | D4⋊F5 | Q8⋊2F5 | SD16⋊3D5 | D4.F5 | Q8.F5 | C40⋊C2 | D4⋊D5 | C5⋊Q16 | C5×SD16 | C5⋊C8 | D10 | C5 | SD16 | C8 | D4 | Q8 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 8 | 1 | 1 | 1 | 1 | 1 | 2 |
Matrix representation of SD16⋊3F5 ►in GL6(𝔽41)
3 | 0 | 0 | 0 | 0 | 0 |
0 | 27 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 38 | 0 | 0 | 0 | 0 |
27 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
0 | 0 | 1 | 0 | 0 | 40 |
0 | 0 | 0 | 1 | 0 | 40 |
0 | 0 | 0 | 0 | 1 | 40 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 32 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 0 |
G:=sub<GL(6,GF(41))| [3,0,0,0,0,0,0,27,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,27,0,0,0,0,38,0,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,40,40,40,40],[1,0,0,0,0,0,0,32,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0] >;
SD16⋊3F5 in GAP, Magma, Sage, TeX
{\rm SD}_{16}\rtimes_3F_5
% in TeX
G:=Group("SD16:3F5");
// GroupNames label
G:=SmallGroup(320,1074);
// by ID
G=gap.SmallGroup(320,1074);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,219,184,136,851,438,102,6278,1595]);
// Polycyclic
G:=Group<a,b,c,d|a^8=b^2=c^5=d^4=1,b*a*b=a^3,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=a^2*b,d*c*d^-1=c^3>;
// generators/relations