Copied to
clipboard

G = Dic20⋊C4order 320 = 26·5

3rd semidirect product of Dic20 and C4 acting faithfully

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Q163F5, Dic203C4, C8.8(C2×F5), C40.6(C2×C4), C5⋊(Q16⋊C4), (C5×Q16)⋊2C4, C5⋊Q164C4, (C2×F5).7D4, C2.24(D4×F5), (Q8×F5).2C2, Q8.4(C2×F5), C10.23(C4×D4), C40⋊C4.1C2, C8⋊F5.1C2, (D5×Q16).3C2, C4⋊F5.6C22, D10.68(C2×D4), D5⋊C8.5C22, Q8⋊F5.2C2, (C4×F5).5C22, C4.10(C22×F5), (Q8×D5).7C22, C20.10(C22×C4), Dic10.6(C2×C4), (C4×D5).32C23, (C8×D5).15C22, Dic5.6(C4○D4), D5.3(C8.C22), (C5×Q8).4(C2×C4), C52C8.12(C2×C4), SmallGroup(320,1077)

Series: Derived Chief Lower central Upper central

C1C20 — Dic20⋊C4
C1C5C10D10C4×D5C4×F5Q8×F5 — Dic20⋊C4
C5C10C20 — Dic20⋊C4
C1C2C4Q16

Generators and relations for Dic20⋊C4
 G = < a,b,c | a40=c4=1, b2=a20, bab-1=a-1, cac-1=a13, cbc-1=a20b >

Subgroups: 418 in 108 conjugacy classes, 42 normal (22 characteristic)
C1, C2, C2, C4, C4, C22, C5, C8, C8, C2×C4, Q8, Q8, D5, C10, C42, C4⋊C4, C2×C8, Q16, Q16, C2×Q8, Dic5, Dic5, C20, C20, F5, D10, C8⋊C4, Q8⋊C4, C4.Q8, C4×Q8, C2×Q16, C52C8, C40, C5⋊C8, Dic10, Dic10, C4×D5, C4×D5, C5×Q8, C2×F5, C2×F5, Q16⋊C4, C8×D5, Dic20, C5⋊Q16, C5×Q16, D5⋊C8, C4×F5, C4×F5, C4⋊F5, C4⋊F5, Q8×D5, C8⋊F5, C40⋊C4, Q8⋊F5, D5×Q16, Q8×F5, Dic20⋊C4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22×C4, C2×D4, C4○D4, F5, C4×D4, C8.C22, C2×F5, Q16⋊C4, C22×F5, D4×F5, Dic20⋊C4

Character table of Dic20⋊C4

 class 12A2B2C4A4B4C4D4E4F4G4H4I4J4K4L4M4N58A8B8C8D1020A20B20C40A40B
 size 115524410101010102020202020204420202048161688
ρ111111111111111111111111111111    trivial
ρ211111-11-11-1-1-11-111-1-11-1-111111-1-1-1    linear of order 2
ρ3111111-1-11-1-1-1-11-1-1111-1-11111-11-1-1    linear of order 2
ρ411111-1-111111-1-1-1-1-1-11111111-1-111    linear of order 2
ρ511111-11111111-1-1-1111-1-1-1-1111-1-1-1    linear of order 2
ρ61111111-11-1-1-111-1-1-1-1111-1-1111111    linear of order 2
ρ711111-1-1-11-1-1-1-1-11111111-1-111-1-111    linear of order 2
ρ8111111-111111-1111-1-11-1-1-1-111-11-1-1    linear of order 2
ρ911-1-11-11-i-1ii-i-11-iii-i1-11-ii111-1-1-1    linear of order 4
ρ1011-1-11-1-1i-1-i-ii11i-ii-i11-1-ii11-1-111    linear of order 4
ρ1111-1-111-1-i-1ii-i1-1i-i-ii1-11-ii11-11-1-1    linear of order 4
ρ1211-1-1111i-1-i-ii-1-1-ii-ii11-1-ii111111    linear of order 4
ρ1311-1-111-1i-1-i-ii1-1-iii-i1-11i-i11-11-1-1    linear of order 4
ρ1411-1-1111-i-1ii-i-1-1i-ii-i11-1i-i111111    linear of order 4
ρ1511-1-11-11i-1-i-ii-11i-i-ii1-11i-i111-1-1-1    linear of order 4
ρ1611-1-11-1-1-i-1ii-i11-ii-ii11-1i-i11-1-111    linear of order 4
ρ172222-200-2-22-22000000200002-20000    orthogonal lifted from D4
ρ182222-2002-2-22-2000000200002-20000    orthogonal lifted from D4
ρ1922-2-2-200-2i2-2i2i2i000000200002-20000    complex lifted from C4○D4
ρ2022-2-2-2002i22i-2i-2i000000200002-20000    complex lifted from C4○D4
ρ21440044-400000000000-1-4000-1-11-111    orthogonal lifted from C2×F5
ρ2244004-4-400000000000-14000-1-111-1-1    orthogonal lifted from C2×F5
ρ2344004-4400000000000-1-4000-1-1-1111    orthogonal lifted from C2×F5
ρ24440044400000000000-14000-1-1-1-1-1-1    orthogonal lifted from F5
ρ254-44-40000000000000040000-400000    symplectic lifted from C8.C22, Schur index 2
ρ264-4-440000000000000040000-400000    symplectic lifted from C8.C22, Schur index 2
ρ278800-80000000000000-20000-220000    orthogonal lifted from D4×F5
ρ288-80000000000000000-200002000-1010    symplectic faithful, Schur index 2
ρ298-80000000000000000-20000200010-10    symplectic faithful, Schur index 2

Smallest permutation representation of Dic20⋊C4
On 80 points
Generators in S80
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 72 21 52)(2 71 22 51)(3 70 23 50)(4 69 24 49)(5 68 25 48)(6 67 26 47)(7 66 27 46)(8 65 28 45)(9 64 29 44)(10 63 30 43)(11 62 31 42)(12 61 32 41)(13 60 33 80)(14 59 34 79)(15 58 35 78)(16 57 36 77)(17 56 37 76)(18 55 38 75)(19 54 39 74)(20 53 40 73)
(1 57 21 77)(2 54 30 50)(3 51 39 63)(4 48 8 76)(5 45 17 49)(6 42 26 62)(7 79 35 75)(9 73 13 61)(10 70 22 74)(11 67 31 47)(12 64 40 60)(14 58 18 46)(15 55 27 59)(16 52 36 72)(19 43 23 71)(20 80 32 44)(24 68 28 56)(25 65 37 69)(29 53 33 41)(34 78 38 66)

G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,72,21,52)(2,71,22,51)(3,70,23,50)(4,69,24,49)(5,68,25,48)(6,67,26,47)(7,66,27,46)(8,65,28,45)(9,64,29,44)(10,63,30,43)(11,62,31,42)(12,61,32,41)(13,60,33,80)(14,59,34,79)(15,58,35,78)(16,57,36,77)(17,56,37,76)(18,55,38,75)(19,54,39,74)(20,53,40,73), (1,57,21,77)(2,54,30,50)(3,51,39,63)(4,48,8,76)(5,45,17,49)(6,42,26,62)(7,79,35,75)(9,73,13,61)(10,70,22,74)(11,67,31,47)(12,64,40,60)(14,58,18,46)(15,55,27,59)(16,52,36,72)(19,43,23,71)(20,80,32,44)(24,68,28,56)(25,65,37,69)(29,53,33,41)(34,78,38,66)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,72,21,52)(2,71,22,51)(3,70,23,50)(4,69,24,49)(5,68,25,48)(6,67,26,47)(7,66,27,46)(8,65,28,45)(9,64,29,44)(10,63,30,43)(11,62,31,42)(12,61,32,41)(13,60,33,80)(14,59,34,79)(15,58,35,78)(16,57,36,77)(17,56,37,76)(18,55,38,75)(19,54,39,74)(20,53,40,73), (1,57,21,77)(2,54,30,50)(3,51,39,63)(4,48,8,76)(5,45,17,49)(6,42,26,62)(7,79,35,75)(9,73,13,61)(10,70,22,74)(11,67,31,47)(12,64,40,60)(14,58,18,46)(15,55,27,59)(16,52,36,72)(19,43,23,71)(20,80,32,44)(24,68,28,56)(25,65,37,69)(29,53,33,41)(34,78,38,66) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,72,21,52),(2,71,22,51),(3,70,23,50),(4,69,24,49),(5,68,25,48),(6,67,26,47),(7,66,27,46),(8,65,28,45),(9,64,29,44),(10,63,30,43),(11,62,31,42),(12,61,32,41),(13,60,33,80),(14,59,34,79),(15,58,35,78),(16,57,36,77),(17,56,37,76),(18,55,38,75),(19,54,39,74),(20,53,40,73)], [(1,57,21,77),(2,54,30,50),(3,51,39,63),(4,48,8,76),(5,45,17,49),(6,42,26,62),(7,79,35,75),(9,73,13,61),(10,70,22,74),(11,67,31,47),(12,64,40,60),(14,58,18,46),(15,55,27,59),(16,52,36,72),(19,43,23,71),(20,80,32,44),(24,68,28,56),(25,65,37,69),(29,53,33,41),(34,78,38,66)]])

Matrix representation of Dic20⋊C4 in GL8(𝔽41)

401000000
400100000
400010000
400000000
0000239270
000029292713
000021604
000037391210
,
00010000
00100000
01000000
10000000
000000400
00001112
00001000
00004040040
,
00100000
10000000
00010000
01000000
000025393737
00003925037
0000392140
00001614218

G:=sub<GL(8,GF(41))| [40,40,40,40,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,2,29,2,37,0,0,0,0,39,29,16,39,0,0,0,0,27,27,0,12,0,0,0,0,0,13,4,10],[0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,40,0,0,0,0,0,1,0,40,0,0,0,0,40,1,0,0,0,0,0,0,0,2,0,40],[0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,25,39,39,16,0,0,0,0,39,25,2,14,0,0,0,0,37,0,14,2,0,0,0,0,37,37,0,18] >;

Dic20⋊C4 in GAP, Magma, Sage, TeX

{\rm Dic}_{20}\rtimes C_4
% in TeX

G:=Group("Dic20:C4");
// GroupNames label

G:=SmallGroup(320,1077);
// by ID

G=gap.SmallGroup(320,1077);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,232,758,219,184,851,438,102,6278,1595]);
// Polycyclic

G:=Group<a,b,c|a^40=c^4=1,b^2=a^20,b*a*b^-1=a^-1,c*a*c^-1=a^13,c*b*c^-1=a^20*b>;
// generators/relations

Export

Character table of Dic20⋊C4 in TeX

׿
×
𝔽