Extensions 1→N→G→Q→1 with N=M5(2) and Q=C10

Direct product G=N×Q with N=M5(2) and Q=C10
dρLabelID
C10×M5(2)160C10xM5(2)320,1004

Semidirect products G=N:Q with N=M5(2) and Q=C10
extensionφ:Q→Out NdρLabelID
M5(2)⋊1C10 = C5×C16⋊C22φ: C10/C5C2 ⊆ Out M5(2)804M5(2):1C10320,1010
M5(2)⋊2C10 = C5×Q32⋊C2φ: C10/C5C2 ⊆ Out M5(2)1604M5(2):2C10320,1011
M5(2)⋊3C10 = C5×C23.C8φ: C10/C5C2 ⊆ Out M5(2)804M5(2):3C10320,154
M5(2)⋊4C10 = C5×D4.C8φ: C10/C5C2 ⊆ Out M5(2)1602M5(2):4C10320,155
M5(2)⋊5C10 = C5×D82C4φ: C10/C5C2 ⊆ Out M5(2)804M5(2):5C10320,165
M5(2)⋊6C10 = C5×M5(2)⋊C2φ: C10/C5C2 ⊆ Out M5(2)804M5(2):6C10320,166
M5(2)⋊7C10 = C5×D4○C16φ: trivial image1602M5(2):7C10320,1005

Non-split extensions G=N.Q with N=M5(2) and Q=C10
extensionφ:Q→Out NdρLabelID
M5(2).1C10 = C5×C8.Q8φ: C10/C5C2 ⊆ Out M5(2)804M5(2).1C10320,170
M5(2).2C10 = C5×C16⋊C4φ: C10/C5C2 ⊆ Out M5(2)804M5(2).2C10320,152
M5(2).3C10 = C5×C8.17D4φ: C10/C5C2 ⊆ Out M5(2)1604M5(2).3C10320,167
M5(2).4C10 = C5×C8.C8φ: C10/C5C2 ⊆ Out M5(2)802M5(2).4C10320,169

׿
×
𝔽