Copied to
clipboard

G = C5×M5(2)⋊C2order 320 = 26·5

Direct product of C5 and M5(2)⋊C2

direct product, metabelian, nilpotent (class 4), monomial, 2-elementary

Aliases: C5×M5(2)⋊C2, D8.2C20, C20.62D8, C40.96D4, M5(2)⋊6C10, C8.2(C2×C20), (C5×D8).6C4, C4.11(C5×D8), C8.16(C5×D4), C40.84(C2×C4), (C2×D8).5C10, C8.C42C10, (C10×D8).12C2, (C2×C20).280D4, (C5×M5(2))⋊14C2, (C2×C10).24SD16, C22.3(C5×SD16), (C2×C40).266C22, C10.56(D4⋊C4), C20.120(C22⋊C4), (C2×C4).11(C5×D4), C4.5(C5×C22⋊C4), (C2×C8).13(C2×C10), (C5×C8.C4)⋊11C2, C2.10(C5×D4⋊C4), SmallGroup(320,166)

Series: Derived Chief Lower central Upper central

C1C8 — C5×M5(2)⋊C2
C1C2C4C2×C4C2×C8C2×C40C5×C8.C4 — C5×M5(2)⋊C2
C1C2C4C8 — C5×M5(2)⋊C2
C1C10C2×C20C2×C40 — C5×M5(2)⋊C2

Generators and relations for C5×M5(2)⋊C2
 G = < a,b,c,d | a5=b16=c2=d2=1, ab=ba, ac=ca, ad=da, cbc=b9, dbd=b3c, cd=dc >

Subgroups: 162 in 62 conjugacy classes, 30 normal (26 characteristic)
C1, C2, C2, C4, C22, C22, C5, C8, C8, C2×C4, D4, C23, C10, C10, C16, C2×C8, M4(2), D8, D8, C2×D4, C20, C2×C10, C2×C10, C8.C4, M5(2), C2×D8, C40, C40, C2×C20, C5×D4, C22×C10, M5(2)⋊C2, C80, C2×C40, C5×M4(2), C5×D8, C5×D8, D4×C10, C5×C8.C4, C5×M5(2), C10×D8, C5×M5(2)⋊C2
Quotients: C1, C2, C4, C22, C5, C2×C4, D4, C10, C22⋊C4, D8, SD16, C20, C2×C10, D4⋊C4, C2×C20, C5×D4, M5(2)⋊C2, C5×C22⋊C4, C5×D8, C5×SD16, C5×D4⋊C4, C5×M5(2)⋊C2

Smallest permutation representation of C5×M5(2)⋊C2
On 80 points
Generators in S80
(1 32 47 57 67)(2 17 48 58 68)(3 18 33 59 69)(4 19 34 60 70)(5 20 35 61 71)(6 21 36 62 72)(7 22 37 63 73)(8 23 38 64 74)(9 24 39 49 75)(10 25 40 50 76)(11 26 41 51 77)(12 27 42 52 78)(13 28 43 53 79)(14 29 44 54 80)(15 30 45 55 65)(16 31 46 56 66)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(2 10)(4 12)(6 14)(8 16)(17 25)(19 27)(21 29)(23 31)(34 42)(36 44)(38 46)(40 48)(50 58)(52 60)(54 62)(56 64)(66 74)(68 76)(70 78)(72 80)
(2 12)(3 15)(4 10)(5 13)(6 8)(7 11)(14 16)(17 27)(18 30)(19 25)(20 28)(21 23)(22 26)(29 31)(33 45)(34 40)(35 43)(36 38)(37 41)(42 48)(44 46)(50 60)(51 63)(52 58)(53 61)(54 56)(55 59)(62 64)(65 69)(66 80)(68 78)(70 76)(71 79)(72 74)(73 77)

G:=sub<Sym(80)| (1,32,47,57,67)(2,17,48,58,68)(3,18,33,59,69)(4,19,34,60,70)(5,20,35,61,71)(6,21,36,62,72)(7,22,37,63,73)(8,23,38,64,74)(9,24,39,49,75)(10,25,40,50,76)(11,26,41,51,77)(12,27,42,52,78)(13,28,43,53,79)(14,29,44,54,80)(15,30,45,55,65)(16,31,46,56,66), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (2,10)(4,12)(6,14)(8,16)(17,25)(19,27)(21,29)(23,31)(34,42)(36,44)(38,46)(40,48)(50,58)(52,60)(54,62)(56,64)(66,74)(68,76)(70,78)(72,80), (2,12)(3,15)(4,10)(5,13)(6,8)(7,11)(14,16)(17,27)(18,30)(19,25)(20,28)(21,23)(22,26)(29,31)(33,45)(34,40)(35,43)(36,38)(37,41)(42,48)(44,46)(50,60)(51,63)(52,58)(53,61)(54,56)(55,59)(62,64)(65,69)(66,80)(68,78)(70,76)(71,79)(72,74)(73,77)>;

G:=Group( (1,32,47,57,67)(2,17,48,58,68)(3,18,33,59,69)(4,19,34,60,70)(5,20,35,61,71)(6,21,36,62,72)(7,22,37,63,73)(8,23,38,64,74)(9,24,39,49,75)(10,25,40,50,76)(11,26,41,51,77)(12,27,42,52,78)(13,28,43,53,79)(14,29,44,54,80)(15,30,45,55,65)(16,31,46,56,66), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (2,10)(4,12)(6,14)(8,16)(17,25)(19,27)(21,29)(23,31)(34,42)(36,44)(38,46)(40,48)(50,58)(52,60)(54,62)(56,64)(66,74)(68,76)(70,78)(72,80), (2,12)(3,15)(4,10)(5,13)(6,8)(7,11)(14,16)(17,27)(18,30)(19,25)(20,28)(21,23)(22,26)(29,31)(33,45)(34,40)(35,43)(36,38)(37,41)(42,48)(44,46)(50,60)(51,63)(52,58)(53,61)(54,56)(55,59)(62,64)(65,69)(66,80)(68,78)(70,76)(71,79)(72,74)(73,77) );

G=PermutationGroup([[(1,32,47,57,67),(2,17,48,58,68),(3,18,33,59,69),(4,19,34,60,70),(5,20,35,61,71),(6,21,36,62,72),(7,22,37,63,73),(8,23,38,64,74),(9,24,39,49,75),(10,25,40,50,76),(11,26,41,51,77),(12,27,42,52,78),(13,28,43,53,79),(14,29,44,54,80),(15,30,45,55,65),(16,31,46,56,66)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(2,10),(4,12),(6,14),(8,16),(17,25),(19,27),(21,29),(23,31),(34,42),(36,44),(38,46),(40,48),(50,58),(52,60),(54,62),(56,64),(66,74),(68,76),(70,78),(72,80)], [(2,12),(3,15),(4,10),(5,13),(6,8),(7,11),(14,16),(17,27),(18,30),(19,25),(20,28),(21,23),(22,26),(29,31),(33,45),(34,40),(35,43),(36,38),(37,41),(42,48),(44,46),(50,60),(51,63),(52,58),(53,61),(54,56),(55,59),(62,64),(65,69),(66,80),(68,78),(70,76),(71,79),(72,74),(73,77)]])

80 conjugacy classes

class 1 2A2B2C2D4A4B5A5B5C5D8A8B8C8D8E10A10B10C10D10E10F10G10H10I···10P16A16B16C16D20A···20H40A···40H40I40J40K40L40M···40T80A···80P
order1222244555588888101010101010101010···101616161620···2040···404040404040···4080···80
size1128822111122488111122228···844442···22···244448···84···4

80 irreducible representations

dim11111111112222222244
type++++++++
imageC1C2C2C2C4C5C10C10C10C20D4D4D8SD16C5×D4C5×D4C5×D8C5×SD16M5(2)⋊C2C5×M5(2)⋊C2
kernelC5×M5(2)⋊C2C5×C8.C4C5×M5(2)C10×D8C5×D8M5(2)⋊C2C8.C4M5(2)C2×D8D8C40C2×C20C20C2×C10C8C2×C4C4C22C5C1
# reps111144444161122448828

Matrix representation of C5×M5(2)⋊C2 in GL4(𝔽241) generated by

87000
08700
00870
00087
,
1852142390
1811261240
20930163134
951521688
,
1000
0100
1852142400
652250240
,
1000
24024000
1697411230
90133230230
G:=sub<GL(4,GF(241))| [87,0,0,0,0,87,0,0,0,0,87,0,0,0,0,87],[185,181,209,95,214,126,30,152,239,1,163,168,0,240,134,8],[1,0,185,65,0,1,214,225,0,0,240,0,0,0,0,240],[1,240,169,90,0,240,74,133,0,0,11,230,0,0,230,230] >;

C5×M5(2)⋊C2 in GAP, Magma, Sage, TeX

C_5\times M_5(2)\rtimes C_2
% in TeX

G:=Group("C5xM5(2):C2");
// GroupNames label

G:=SmallGroup(320,166);
// by ID

G=gap.SmallGroup(320,166);
# by ID

G:=PCGroup([7,-2,-2,-5,-2,-2,-2,-2,280,309,2803,3650,136,3511,172,10085,5052,124]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^16=c^2=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^9,d*b*d=b^3*c,c*d=d*c>;
// generators/relations

׿
×
𝔽