Copied to
clipboard

G = C5×C8.Q8order 320 = 26·5

Direct product of C5 and C8.Q8

direct product, metacyclic, nilpotent (class 4), monomial, 2-elementary

Aliases: C5×C8.Q8, C161C20, C8011C4, C40.10Q8, C20.44SD16, M5(2).1C10, C8.(C5×Q8), C8.18(C2×C20), C20.86(C4⋊C4), C4.Q8.1C10, C4.9(C5×SD16), C40.127(C2×C4), (C2×C20).282D4, C8.C4.2C10, (C2×C10).26SD16, C10.15(C4.Q8), (C5×M5(2)).3C2, C22.5(C5×SD16), (C2×C40).268C22, C4.6(C5×C4⋊C4), C2.3(C5×C4.Q8), (C2×C4).13(C5×D4), (C5×C4.Q8).6C2, (C2×C8).15(C2×C10), (C5×C8.C4).5C2, SmallGroup(320,170)

Series: Derived Chief Lower central Upper central

C1C8 — C5×C8.Q8
C1C2C4C2×C4C2×C8C2×C40C5×C4.Q8 — C5×C8.Q8
C1C2C4C8 — C5×C8.Q8
C1C10C2×C20C2×C40 — C5×C8.Q8

Generators and relations for C5×C8.Q8
 G = < a,b,c,d | a5=b8=1, c4=b2, d2=b-1c2, ab=ba, ac=ca, ad=da, cbc-1=b5, dbd-1=b3, dcd-1=b4c3 >

2C2
8C4
2C10
4C8
4C2×C4
8C20
2M4(2)
2C4⋊C4
4C2×C20
4C40
2C5×M4(2)
2C5×C4⋊C4

Smallest permutation representation of C5×C8.Q8
On 80 points
Generators in S80
(1 55 70 20 44)(2 56 71 21 45)(3 57 72 22 46)(4 58 73 23 47)(5 59 74 24 48)(6 60 75 25 33)(7 61 76 26 34)(8 62 77 27 35)(9 63 78 28 36)(10 64 79 29 37)(11 49 80 30 38)(12 50 65 31 39)(13 51 66 32 40)(14 52 67 17 41)(15 53 68 18 42)(16 54 69 19 43)
(1 3 5 7 9 11 13 15)(2 12 6 16 10 4 14 8)(17 27 21 31 25 19 29 23)(18 20 22 24 26 28 30 32)(33 43 37 47 41 35 45 39)(34 36 38 40 42 44 46 48)(49 51 53 55 57 59 61 63)(50 60 54 64 58 52 62 56)(65 75 69 79 73 67 77 71)(66 68 70 72 74 76 78 80)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(2 4 10 12)(3 7)(5 13)(6 16 14 8)(11 15)(17 27 25 19)(18 30)(21 23 29 31)(22 26)(24 32)(33 43 41 35)(34 46)(37 39 45 47)(38 42)(40 48)(49 53)(50 56 58 64)(51 59)(52 62 60 54)(57 61)(65 71 73 79)(66 74)(67 77 75 69)(68 80)(72 76)

G:=sub<Sym(80)| (1,55,70,20,44)(2,56,71,21,45)(3,57,72,22,46)(4,58,73,23,47)(5,59,74,24,48)(6,60,75,25,33)(7,61,76,26,34)(8,62,77,27,35)(9,63,78,28,36)(10,64,79,29,37)(11,49,80,30,38)(12,50,65,31,39)(13,51,66,32,40)(14,52,67,17,41)(15,53,68,18,42)(16,54,69,19,43), (1,3,5,7,9,11,13,15)(2,12,6,16,10,4,14,8)(17,27,21,31,25,19,29,23)(18,20,22,24,26,28,30,32)(33,43,37,47,41,35,45,39)(34,36,38,40,42,44,46,48)(49,51,53,55,57,59,61,63)(50,60,54,64,58,52,62,56)(65,75,69,79,73,67,77,71)(66,68,70,72,74,76,78,80), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (2,4,10,12)(3,7)(5,13)(6,16,14,8)(11,15)(17,27,25,19)(18,30)(21,23,29,31)(22,26)(24,32)(33,43,41,35)(34,46)(37,39,45,47)(38,42)(40,48)(49,53)(50,56,58,64)(51,59)(52,62,60,54)(57,61)(65,71,73,79)(66,74)(67,77,75,69)(68,80)(72,76)>;

G:=Group( (1,55,70,20,44)(2,56,71,21,45)(3,57,72,22,46)(4,58,73,23,47)(5,59,74,24,48)(6,60,75,25,33)(7,61,76,26,34)(8,62,77,27,35)(9,63,78,28,36)(10,64,79,29,37)(11,49,80,30,38)(12,50,65,31,39)(13,51,66,32,40)(14,52,67,17,41)(15,53,68,18,42)(16,54,69,19,43), (1,3,5,7,9,11,13,15)(2,12,6,16,10,4,14,8)(17,27,21,31,25,19,29,23)(18,20,22,24,26,28,30,32)(33,43,37,47,41,35,45,39)(34,36,38,40,42,44,46,48)(49,51,53,55,57,59,61,63)(50,60,54,64,58,52,62,56)(65,75,69,79,73,67,77,71)(66,68,70,72,74,76,78,80), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (2,4,10,12)(3,7)(5,13)(6,16,14,8)(11,15)(17,27,25,19)(18,30)(21,23,29,31)(22,26)(24,32)(33,43,41,35)(34,46)(37,39,45,47)(38,42)(40,48)(49,53)(50,56,58,64)(51,59)(52,62,60,54)(57,61)(65,71,73,79)(66,74)(67,77,75,69)(68,80)(72,76) );

G=PermutationGroup([[(1,55,70,20,44),(2,56,71,21,45),(3,57,72,22,46),(4,58,73,23,47),(5,59,74,24,48),(6,60,75,25,33),(7,61,76,26,34),(8,62,77,27,35),(9,63,78,28,36),(10,64,79,29,37),(11,49,80,30,38),(12,50,65,31,39),(13,51,66,32,40),(14,52,67,17,41),(15,53,68,18,42),(16,54,69,19,43)], [(1,3,5,7,9,11,13,15),(2,12,6,16,10,4,14,8),(17,27,21,31,25,19,29,23),(18,20,22,24,26,28,30,32),(33,43,37,47,41,35,45,39),(34,36,38,40,42,44,46,48),(49,51,53,55,57,59,61,63),(50,60,54,64,58,52,62,56),(65,75,69,79,73,67,77,71),(66,68,70,72,74,76,78,80)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(2,4,10,12),(3,7),(5,13),(6,16,14,8),(11,15),(17,27,25,19),(18,30),(21,23,29,31),(22,26),(24,32),(33,43,41,35),(34,46),(37,39,45,47),(38,42),(40,48),(49,53),(50,56,58,64),(51,59),(52,62,60,54),(57,61),(65,71,73,79),(66,74),(67,77,75,69),(68,80),(72,76)]])

80 conjugacy classes

class 1 2A2B4A4B4C4D5A5B5C5D8A8B8C8D8E10A10B10C10D10E10F10G10H16A16B16C16D20A···20H20I···20P40A···40H40I40J40K40L40M···40T80A···80P
order122444455558888810101010101010101616161620···2020···2040···404040404040···4080···80
size11222881111224881111222244442···28···82···244448···84···4

80 irreducible representations

dim11111111112222222244
type++++-+
imageC1C2C2C2C4C5C10C10C10C20Q8D4SD16SD16C5×Q8C5×D4C5×SD16C5×SD16C8.Q8C5×C8.Q8
kernelC5×C8.Q8C5×C4.Q8C5×C8.C4C5×M5(2)C80C8.Q8C4.Q8C8.C4M5(2)C16C40C2×C20C20C2×C10C8C2×C4C4C22C5C1
# reps111144444161122448828

Matrix representation of C5×C8.Q8 in GL4(𝔽241) generated by

205000
020500
002050
000205
,
222191219
222222139111
003819
002030
,
1201201181
1021020171
20300120
3838019
,
10120111
0240102231
00019
00380
G:=sub<GL(4,GF(241))| [205,0,0,0,0,205,0,0,0,0,205,0,0,0,0,205],[222,222,0,0,19,222,0,0,121,139,38,203,9,111,19,0],[120,102,203,38,120,102,0,38,1,0,0,0,181,171,120,19],[1,0,0,0,0,240,0,0,120,102,0,38,111,231,19,0] >;

C5×C8.Q8 in GAP, Magma, Sage, TeX

C_5\times C_8.Q_8
% in TeX

G:=Group("C5xC8.Q8");
// GroupNames label

G:=SmallGroup(320,170);
// by ID

G=gap.SmallGroup(320,170);
# by ID

G:=PCGroup([7,-2,-2,-5,-2,-2,-2,-2,280,309,148,2803,136,3511,10085,124]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^8=1,c^4=b^2,d^2=b^-1*c^2,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^5,d*b*d^-1=b^3,d*c*d^-1=b^4*c^3>;
// generators/relations

Export

Subgroup lattice of C5×C8.Q8 in TeX

׿
×
𝔽