Extensions 1→N→G→Q→1 with N=C10 and Q=M5(2)

Direct product G=N×Q with N=C10 and Q=M5(2)
dρLabelID
C10×M5(2)160C10xM5(2)320,1004

Semidirect products G=N:Q with N=C10 and Q=M5(2)
extensionφ:Q→Aut NdρLabelID
C101M5(2) = C2×C8.F5φ: M5(2)/C8C4 ⊆ Aut C10160C10:1M5(2)320,1052
C102M5(2) = C2×C20.C8φ: M5(2)/C2×C4C4 ⊆ Aut C10160C10:2M5(2)320,1081
C103M5(2) = C2×C80⋊C2φ: M5(2)/C16C2 ⊆ Aut C10160C10:3M5(2)320,527
C104M5(2) = C2×C20.4C8φ: M5(2)/C2×C8C2 ⊆ Aut C10160C10:4M5(2)320,724

Non-split extensions G=N.Q with N=C10 and Q=M5(2)
extensionφ:Q→Aut NdρLabelID
C10.1M5(2) = C40.C8φ: M5(2)/C8C4 ⊆ Aut C10320C10.1M5(2)320,224
C10.2M5(2) = D10⋊C16φ: M5(2)/C8C4 ⊆ Aut C10160C10.2M5(2)320,225
C10.3M5(2) = C10.M5(2)φ: M5(2)/C8C4 ⊆ Aut C10320C10.3M5(2)320,226
C10.4M5(2) = C20⋊C16φ: M5(2)/C2×C4C4 ⊆ Aut C10320C10.4M5(2)320,196
C10.5M5(2) = C42.4F5φ: M5(2)/C2×C4C4 ⊆ Aut C10320C10.5M5(2)320,197
C10.6M5(2) = C10.6M5(2)φ: M5(2)/C2×C4C4 ⊆ Aut C10160C10.6M5(2)320,249
C10.7M5(2) = C40.88D4φ: M5(2)/C16C2 ⊆ Aut C10320C10.7M5(2)320,59
C10.8M5(2) = C8017C4φ: M5(2)/C16C2 ⊆ Aut C10320C10.8M5(2)320,60
C10.9M5(2) = D101C16φ: M5(2)/C16C2 ⊆ Aut C10160C10.9M5(2)320,65
C10.10M5(2) = C40.10C8φ: M5(2)/C2×C8C2 ⊆ Aut C10320C10.10M5(2)320,19
C10.11M5(2) = C203C16φ: M5(2)/C2×C8C2 ⊆ Aut C10320C10.11M5(2)320,20
C10.12M5(2) = C40.91D4φ: M5(2)/C2×C8C2 ⊆ Aut C10160C10.12M5(2)320,107
C10.13M5(2) = C5×C165C4central extension (φ=1)320C10.13M5(2)320,151
C10.14M5(2) = C5×C22⋊C16central extension (φ=1)160C10.14M5(2)320,153
C10.15M5(2) = C5×C4⋊C16central extension (φ=1)320C10.15M5(2)320,168

׿
×
𝔽