Extensions 1→N→G→Q→1 with N=C5xQ16 and Q=C4

Direct product G=NxQ with N=C5xQ16 and Q=C4
dρLabelID
Q16xC20320Q16xC20320,940

Semidirect products G=N:Q with N=C5xQ16 and Q=C4
extensionφ:Q→Out NdρLabelID
(C5xQ16):1C4 = D40:1C4φ: C4/C1C4 ⊆ Out C5xQ16808+(C5xQ16):1C4320,245
(C5xQ16):2C4 = Dic20:C4φ: C4/C1C4 ⊆ Out C5xQ16808-(C5xQ16):2C4320,1077
(C5xQ16):3C4 = Q16:F5φ: C4/C1C4 ⊆ Out C5xQ16808+(C5xQ16):3C4320,1079
(C5xQ16):4C4 = D5.Q32φ: C4/C1C4 ⊆ Out C5xQ16808-(C5xQ16):4C4320,246
(C5xQ16):5C4 = Q16xF5φ: C4/C1C4 ⊆ Out C5xQ16808-(C5xQ16):5C4320,1076
(C5xQ16):6C4 = Q16:5F5φ: C4/C1C4 ⊆ Out C5xQ16808+(C5xQ16):6C4320,1078
(C5xQ16):7C4 = C40.15D4φ: C4/C2C2 ⊆ Out C5xQ16320(C5xQ16):7C4320,122
(C5xQ16):8C4 = Q16xDic5φ: C4/C2C2 ⊆ Out C5xQ16320(C5xQ16):8C4320,810
(C5xQ16):9C4 = D8:5Dic5φ: C4/C2C2 ⊆ Out C5xQ16804(C5xQ16):9C4320,823
(C5xQ16):10C4 = D8:2Dic5φ: C4/C2C2 ⊆ Out C5xQ16804(C5xQ16):10C4320,124
(C5xQ16):11C4 = Q16:Dic5φ: C4/C2C2 ⊆ Out C5xQ16320(C5xQ16):11C4320,811
(C5xQ16):12C4 = D8:4Dic5φ: C4/C2C2 ⊆ Out C5xQ16804(C5xQ16):12C4320,824
(C5xQ16):13C4 = C5xC2.Q32φ: C4/C2C2 ⊆ Out C5xQ16320(C5xQ16):13C4320,163
(C5xQ16):14C4 = C5xD8:2C4φ: C4/C2C2 ⊆ Out C5xQ16804(C5xQ16):14C4320,165
(C5xQ16):15C4 = C5xQ16:C4φ: C4/C2C2 ⊆ Out C5xQ16320(C5xQ16):15C4320,942
(C5xQ16):16C4 = C5xC8.26D4φ: C4/C2C2 ⊆ Out C5xQ16804(C5xQ16):16C4320,945
(C5xQ16):17C4 = C5xC8oD8φ: trivial image802(C5xQ16):17C4320,944

Non-split extensions G=N.Q with N=C5xQ16 and Q=C4
extensionφ:Q→Out NdρLabelID
(C5xQ16).1C4 = Dic20.C4φ: C4/C1C4 ⊆ Out C5xQ161608-(C5xQ16).1C4320,248
(C5xQ16).2C4 = Q16.F5φ: C4/C1C4 ⊆ Out C5xQ161608+(C5xQ16).2C4320,247
(C5xQ16).3C4 = C20.58D8φ: C4/C2C2 ⊆ Out C5xQ161604(C5xQ16).3C4320,125
(C5xQ16).4C4 = Q16.Dic5φ: C4/C2C2 ⊆ Out C5xQ161604(C5xQ16).4C4320,123
(C5xQ16).5C4 = C5xD8.C4φ: C4/C2C2 ⊆ Out C5xQ161602(C5xQ16).5C4320,164
(C5xQ16).6C4 = C5xC8.17D4φ: C4/C2C2 ⊆ Out C5xQ161604(C5xQ16).6C4320,167

׿
x
:
Z
F
o
wr
Q
<