Copied to
clipboard

G = Dic20.C4order 320 = 26·5

1st non-split extension by Dic20 of C4 acting faithfully

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Q16.2F5, Dic5.3D8, Dic20.1C4, D10.14SD16, C8.4(C2×F5), C40.4(C2×C4), C5⋊(C8.17D4), (C4×D5).27D4, C52C8.18D4, (C5×Q16).1C4, (D5×Q16).2C2, C4.8(C22⋊F5), C8.F5.1C2, C40.C4.1C2, C20.8(C22⋊C4), (C8×D5).12C22, C2.13(D20⋊C4), C10.12(D4⋊C4), SmallGroup(320,248)

Series: Derived Chief Lower central Upper central

C1C40 — Dic20.C4
C1C5C10C20C4×D5C8×D5C40.C4 — Dic20.C4
C5C10C20C40 — Dic20.C4
C1C2C4C8Q16

Generators and relations for Dic20.C4
 G = < a,b,c | a40=1, b2=c4=a20, bab-1=a-1, cac-1=a3, cbc-1=a35b >

10C2
4C4
5C22
5C4
20C4
2D5
2Q8
5C8
5C2×C4
10Q8
20Q8
20C2×C4
20C8
4C20
4Dic5
5Q16
5C2×C8
10C2×Q8
10Q16
10M4(2)
10C16
2C5×Q8
2Dic10
4C5⋊C8
4Dic10
4C4×D5
5C2×Q16
5C8.C4
5M5(2)
2Q8×D5
2C5⋊Q16
2C5⋊C16
2C4.F5
5C8.17D4

Character table of Dic20.C4

 class 12A2B4A4B4C4D58A8B8C8D8E1016A16B16C16D20A20B20C40A40B
 size 111028104044101040404202020208161688
ρ111111111111111111111111    trivial
ρ21111-11-11111111-1-1-1-11-1-111    linear of order 2
ρ311111111111-1-11-1-1-1-111111    linear of order 2
ρ41111-11-11111-1-1111111-1-111    linear of order 2
ρ511-11-1-1111-1-1i-i1-iii-i1-1-111    linear of order 4
ρ611-11-1-1111-1-1-ii1i-i-ii1-1-111    linear of order 4
ρ711-111-1-111-1-1-ii1-iii-i11111    linear of order 4
ρ811-111-1-111-1-1i-i1i-i-ii11111    linear of order 4
ρ922220202-2-2-20020000200-2-2    orthogonal lifted from D4
ρ1022-220-202-2220020000200-2-2    orthogonal lifted from D4
ρ1122-2-202020000022-22-2-20000    orthogonal lifted from D8
ρ1222-2-20202000002-22-22-20000    orthogonal lifted from D8
ρ13222-20-202000002--2--2-2-2-20000    complex lifted from SD16
ρ14222-20-202000002-2-2--2--2-20000    complex lifted from SD16
ρ154404-400-140000-10000-111-1-1    orthogonal lifted from C2×F5
ρ164404400-140000-10000-1-1-1-1-1    orthogonal lifted from F5
ρ174404000-1-40000-10000-15-511    orthogonal lifted from C22⋊F5
ρ184404000-1-40000-10000-1-5511    orthogonal lifted from C22⋊F5
ρ194-4000004022-2200-4000000000    symplectic lifted from C8.17D4, Schur index 2
ρ204-40000040-222200-4000000000    symplectic lifted from C8.17D4, Schur index 2
ρ21880-8000-200000-2000020000    orthogonal lifted from D20⋊C4, Schur index 2
ρ228-800000-20000020000000-1010    symplectic faithful, Schur index 2
ρ238-800000-2000002000000010-10    symplectic faithful, Schur index 2

Smallest permutation representation of Dic20.C4
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 46 21 66)(2 45 22 65)(3 44 23 64)(4 43 24 63)(5 42 25 62)(6 41 26 61)(7 80 27 60)(8 79 28 59)(9 78 29 58)(10 77 30 57)(11 76 31 56)(12 75 32 55)(13 74 33 54)(14 73 34 53)(15 72 35 52)(16 71 36 51)(17 70 37 50)(18 69 38 49)(19 68 39 48)(20 67 40 47)(81 127 101 147)(82 126 102 146)(83 125 103 145)(84 124 104 144)(85 123 105 143)(86 122 106 142)(87 121 107 141)(88 160 108 140)(89 159 109 139)(90 158 110 138)(91 157 111 137)(92 156 112 136)(93 155 113 135)(94 154 114 134)(95 153 115 133)(96 152 116 132)(97 151 117 131)(98 150 118 130)(99 149 119 129)(100 148 120 128)
(1 91 31 101 21 111 11 81)(2 118 40 104 22 98 20 84)(3 105 9 107 23 85 29 87)(4 92 18 110 24 112 38 90)(5 119 27 113 25 99 7 93)(6 106 36 116 26 86 16 96)(8 120 14 82 28 100 34 102)(10 94 32 88 30 114 12 108)(13 95 19 97 33 115 39 117)(15 109 37 103 35 89 17 83)(41 127 71 137 61 147 51 157)(42 154 80 140 62 134 60 160)(43 141 49 143 63 121 69 123)(44 128 58 146 64 148 78 126)(45 155 67 149 65 135 47 129)(46 142 76 152 66 122 56 132)(48 156 54 158 68 136 74 138)(50 130 72 124 70 150 52 144)(53 131 59 133 73 151 79 153)(55 145 77 139 75 125 57 159)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,46,21,66)(2,45,22,65)(3,44,23,64)(4,43,24,63)(5,42,25,62)(6,41,26,61)(7,80,27,60)(8,79,28,59)(9,78,29,58)(10,77,30,57)(11,76,31,56)(12,75,32,55)(13,74,33,54)(14,73,34,53)(15,72,35,52)(16,71,36,51)(17,70,37,50)(18,69,38,49)(19,68,39,48)(20,67,40,47)(81,127,101,147)(82,126,102,146)(83,125,103,145)(84,124,104,144)(85,123,105,143)(86,122,106,142)(87,121,107,141)(88,160,108,140)(89,159,109,139)(90,158,110,138)(91,157,111,137)(92,156,112,136)(93,155,113,135)(94,154,114,134)(95,153,115,133)(96,152,116,132)(97,151,117,131)(98,150,118,130)(99,149,119,129)(100,148,120,128), (1,91,31,101,21,111,11,81)(2,118,40,104,22,98,20,84)(3,105,9,107,23,85,29,87)(4,92,18,110,24,112,38,90)(5,119,27,113,25,99,7,93)(6,106,36,116,26,86,16,96)(8,120,14,82,28,100,34,102)(10,94,32,88,30,114,12,108)(13,95,19,97,33,115,39,117)(15,109,37,103,35,89,17,83)(41,127,71,137,61,147,51,157)(42,154,80,140,62,134,60,160)(43,141,49,143,63,121,69,123)(44,128,58,146,64,148,78,126)(45,155,67,149,65,135,47,129)(46,142,76,152,66,122,56,132)(48,156,54,158,68,136,74,138)(50,130,72,124,70,150,52,144)(53,131,59,133,73,151,79,153)(55,145,77,139,75,125,57,159)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,46,21,66)(2,45,22,65)(3,44,23,64)(4,43,24,63)(5,42,25,62)(6,41,26,61)(7,80,27,60)(8,79,28,59)(9,78,29,58)(10,77,30,57)(11,76,31,56)(12,75,32,55)(13,74,33,54)(14,73,34,53)(15,72,35,52)(16,71,36,51)(17,70,37,50)(18,69,38,49)(19,68,39,48)(20,67,40,47)(81,127,101,147)(82,126,102,146)(83,125,103,145)(84,124,104,144)(85,123,105,143)(86,122,106,142)(87,121,107,141)(88,160,108,140)(89,159,109,139)(90,158,110,138)(91,157,111,137)(92,156,112,136)(93,155,113,135)(94,154,114,134)(95,153,115,133)(96,152,116,132)(97,151,117,131)(98,150,118,130)(99,149,119,129)(100,148,120,128), (1,91,31,101,21,111,11,81)(2,118,40,104,22,98,20,84)(3,105,9,107,23,85,29,87)(4,92,18,110,24,112,38,90)(5,119,27,113,25,99,7,93)(6,106,36,116,26,86,16,96)(8,120,14,82,28,100,34,102)(10,94,32,88,30,114,12,108)(13,95,19,97,33,115,39,117)(15,109,37,103,35,89,17,83)(41,127,71,137,61,147,51,157)(42,154,80,140,62,134,60,160)(43,141,49,143,63,121,69,123)(44,128,58,146,64,148,78,126)(45,155,67,149,65,135,47,129)(46,142,76,152,66,122,56,132)(48,156,54,158,68,136,74,138)(50,130,72,124,70,150,52,144)(53,131,59,133,73,151,79,153)(55,145,77,139,75,125,57,159) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,46,21,66),(2,45,22,65),(3,44,23,64),(4,43,24,63),(5,42,25,62),(6,41,26,61),(7,80,27,60),(8,79,28,59),(9,78,29,58),(10,77,30,57),(11,76,31,56),(12,75,32,55),(13,74,33,54),(14,73,34,53),(15,72,35,52),(16,71,36,51),(17,70,37,50),(18,69,38,49),(19,68,39,48),(20,67,40,47),(81,127,101,147),(82,126,102,146),(83,125,103,145),(84,124,104,144),(85,123,105,143),(86,122,106,142),(87,121,107,141),(88,160,108,140),(89,159,109,139),(90,158,110,138),(91,157,111,137),(92,156,112,136),(93,155,113,135),(94,154,114,134),(95,153,115,133),(96,152,116,132),(97,151,117,131),(98,150,118,130),(99,149,119,129),(100,148,120,128)], [(1,91,31,101,21,111,11,81),(2,118,40,104,22,98,20,84),(3,105,9,107,23,85,29,87),(4,92,18,110,24,112,38,90),(5,119,27,113,25,99,7,93),(6,106,36,116,26,86,16,96),(8,120,14,82,28,100,34,102),(10,94,32,88,30,114,12,108),(13,95,19,97,33,115,39,117),(15,109,37,103,35,89,17,83),(41,127,71,137,61,147,51,157),(42,154,80,140,62,134,60,160),(43,141,49,143,63,121,69,123),(44,128,58,146,64,148,78,126),(45,155,67,149,65,135,47,129),(46,142,76,152,66,122,56,132),(48,156,54,158,68,136,74,138),(50,130,72,124,70,150,52,144),(53,131,59,133,73,151,79,153),(55,145,77,139,75,125,57,159)]])

Matrix representation of Dic20.C4 in GL8(𝔽241)

01000000
00100000
00010000
2402402402400000
0000111100
00002301100
00001752380219
00001618311219
,
2400000000
11110000
0002400000
0024000000
000021921000
00002102200
000016121841198
000018352140200
,
228021210000
212102280000
22020722000000
133434130000
00003620510
00001021391239
0000207330169
0000111129066

G:=sub<GL(8,GF(241))| [0,0,0,240,0,0,0,0,1,0,0,240,0,0,0,0,0,1,0,240,0,0,0,0,0,0,1,240,0,0,0,0,0,0,0,0,11,230,175,161,0,0,0,0,11,11,238,83,0,0,0,0,0,0,0,11,0,0,0,0,0,0,219,219],[240,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,240,0,0,0,0,0,1,240,0,0,0,0,0,0,0,0,0,219,210,161,183,0,0,0,0,210,22,218,52,0,0,0,0,0,0,41,140,0,0,0,0,0,0,198,200],[228,21,220,13,0,0,0,0,0,21,207,34,0,0,0,0,21,0,220,34,0,0,0,0,21,228,0,13,0,0,0,0,0,0,0,0,36,102,207,111,0,0,0,0,205,139,33,129,0,0,0,0,1,1,0,0,0,0,0,0,0,239,169,66] >;

Dic20.C4 in GAP, Magma, Sage, TeX

{\rm Dic}_{20}.C_4
% in TeX

G:=Group("Dic20.C4");
// GroupNames label

G:=SmallGroup(320,248);
// by ID

G=gap.SmallGroup(320,248);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,28,141,232,387,184,675,794,80,1684,851,102,6278,3156]);
// Polycyclic

G:=Group<a,b,c|a^40=1,b^2=c^4=a^20,b*a*b^-1=a^-1,c*a*c^-1=a^3,c*b*c^-1=a^35*b>;
// generators/relations

Export

Subgroup lattice of Dic20.C4 in TeX
Character table of Dic20.C4 in TeX

׿
×
𝔽